Broadband topological transitions in twisted elastodynamic metasurfaces.

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Simon Yves,Yu-Gui Peng,Andrea Alù
{"title":"Broadband topological transitions in twisted elastodynamic metasurfaces.","authors":"Simon Yves,Yu-Gui Peng,Andrea Alù","doi":"10.1073/pnas.2427049122","DOIUrl":null,"url":null,"abstract":"In the last decade, the connection between physics and topology has resulted in the discovery of several new phenomena. A celebrated example is the field of topological insulators [X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057-1110 (2011)]., in which topological quantities describing the bulk medium response in reciprocal space dictate the presence of protected transport states at the boundary of a finite sample. Broken symmetries in the microscopic structure of a material play a prominent role in determining its topological features relevant to these phenomena. As another landmark phenomenon driven by broken symmetries, twistronics leverages the rotation angle between coupled layers to control in extreme ways the dispersion topology, leading to flat-band superconductivity [Y. Cao et al., Nature 556, 43-50 (2018)] and topological transitions for polaritons [G. Hu et al., Nature 582, 209-213 (2020)]. Here, we apply these concepts to elastodynamic waves, and exploit the twist degree-of-freedom to control broken symmetries in the microscopic structure of elastic metasurfaces, demonstrating extreme wave control. We predict and experimentally demonstrate topological transitions within twisted elastodynamic metasurfaces, which we harness for broadband, reconfigurable, and robust manipulation of phonons. Our twist-elastic approach opens alternative directions in microelectronics, microfluidics, and ultrasound sensing, leveraging precise multifunctional engineering of mechanical vibrations of relevance to many modern technologies.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"34 1","pages":"e2427049122"},"PeriodicalIF":9.1000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2427049122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decade, the connection between physics and topology has resulted in the discovery of several new phenomena. A celebrated example is the field of topological insulators [X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057-1110 (2011)]., in which topological quantities describing the bulk medium response in reciprocal space dictate the presence of protected transport states at the boundary of a finite sample. Broken symmetries in the microscopic structure of a material play a prominent role in determining its topological features relevant to these phenomena. As another landmark phenomenon driven by broken symmetries, twistronics leverages the rotation angle between coupled layers to control in extreme ways the dispersion topology, leading to flat-band superconductivity [Y. Cao et al., Nature 556, 43-50 (2018)] and topological transitions for polaritons [G. Hu et al., Nature 582, 209-213 (2020)]. Here, we apply these concepts to elastodynamic waves, and exploit the twist degree-of-freedom to control broken symmetries in the microscopic structure of elastic metasurfaces, demonstrating extreme wave control. We predict and experimentally demonstrate topological transitions within twisted elastodynamic metasurfaces, which we harness for broadband, reconfigurable, and robust manipulation of phonons. Our twist-elastic approach opens alternative directions in microelectronics, microfluidics, and ultrasound sensing, leveraging precise multifunctional engineering of mechanical vibrations of relevance to many modern technologies.
扭曲弹性动力学超表面的宽带拓扑跃迁。
在过去的十年里,物理学和拓扑学之间的联系导致了一些新现象的发现。一个著名的例子是拓扑绝缘体领域[x - l。气,研究所。[j].现代物理学报,2016,35(5):387 - 391(2011)。,其中描述互反空间中散装介质响应的拓扑量决定了有限样本边界上受保护输运状态的存在。材料微观结构中的破缺对称性在决定与这些现象相关的拓扑特征方面起着重要作用。作为另一个由对称性破缺驱动的标志性现象,涡旋电子学利用耦合层之间的旋转角度以极端的方式控制色散拓扑,从而导致平带超导[Y]。曹等,《自然》556,43-50(2018)]和极化子的拓扑跃迁[j]。胡等,《自然》582,209-213(2020)。在这里,我们将这些概念应用于弹性动力波,并利用扭转自由度来控制弹性超表面微观结构中的破缺对称性,展示了极端的波控制。我们预测并实验证明了扭曲弹性动力学超表面中的拓扑跃迁,我们利用它来实现声子的宽带、可重构和鲁棒操纵。我们的扭转弹性方法为微电子、微流体和超声传感开辟了另一个方向,利用与许多现代技术相关的机械振动的精确多功能工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信