Predicting Cycloplegic Spherical Equivalent Refraction Among Children and Adolescents Using Non-cycloplegic Data and Machine Learning - China, 2020-2024.

IF 2.9 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Keke Liu, Ran Qin, Huijuan Luo, Huining Kuang, Ranbo E, Chenyu Zhang, Bingjie Sun, Xin Guo
{"title":"Predicting Cycloplegic Spherical Equivalent Refraction Among Children and Adolescents Using Non-cycloplegic Data and Machine Learning - China, 2020-2024.","authors":"Keke Liu, Ran Qin, Huijuan Luo, Huining Kuang, Ranbo E, Chenyu Zhang, Bingjie Sun, Xin Guo","doi":"10.46234/ccdcw2025.217","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cycloplegic refraction is the gold standard for assessing refractive error in children. However, logistical constraints hinder its implementation in large-scale surveys.</p><p><strong>Methods: </strong>Data obtained from a nationwide ocular health survey conducted in ten provincial-level administrative divisions in China were analyzed (2020-2024). Participants aged 5-18 years underwent standardized non-cycloplegic and cycloplegic autorefraction, axial length (AL), corneal radius (CR), and AL/CR measurements. Random forest and XGBoost models were trained to predict the cycloplegic spherical equivalent (SE) using non-cycloplegic SE, uncorrected visual acuity (UCVA), and biometric parameters. Performance was evaluated using R<sup>2</sup>, root mean square error (RMSE), and Bland-Altman analysis.</p><p><strong>Results: </strong>Both models exhibited strong predictive performance. In the test set, random forest achieved R<sup>2</sup>=0.88 and RMSE=0.55 diopter (D), whereas XGBoost achieved R<sup>2</sup>=0.89 and RMSE=0.54 D. Non-cycloplegic SE, AL/CR ratio, AL, and UCVA were consistently the top predictors. The predicted SE exhibited strong agreement with the cycloplegic SE, with minimal residual bias.</p><p><strong>Conclusion: </strong>Machine learning models incorporating noncycloplegic SE and ocular biometrics accurately estimate cycloplegic SE in children and adolescents, providing a practical alternative for large-scale refractive-error surveillance when cycloplegia is impractical.</p>","PeriodicalId":69039,"journal":{"name":"中国疾病预防控制中心周报","volume":"7 40","pages":"1284-1289"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12518965/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国疾病预防控制中心周报","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.46234/ccdcw2025.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Cycloplegic refraction is the gold standard for assessing refractive error in children. However, logistical constraints hinder its implementation in large-scale surveys.

Methods: Data obtained from a nationwide ocular health survey conducted in ten provincial-level administrative divisions in China were analyzed (2020-2024). Participants aged 5-18 years underwent standardized non-cycloplegic and cycloplegic autorefraction, axial length (AL), corneal radius (CR), and AL/CR measurements. Random forest and XGBoost models were trained to predict the cycloplegic spherical equivalent (SE) using non-cycloplegic SE, uncorrected visual acuity (UCVA), and biometric parameters. Performance was evaluated using R2, root mean square error (RMSE), and Bland-Altman analysis.

Results: Both models exhibited strong predictive performance. In the test set, random forest achieved R2=0.88 and RMSE=0.55 diopter (D), whereas XGBoost achieved R2=0.89 and RMSE=0.54 D. Non-cycloplegic SE, AL/CR ratio, AL, and UCVA were consistently the top predictors. The predicted SE exhibited strong agreement with the cycloplegic SE, with minimal residual bias.

Conclusion: Machine learning models incorporating noncycloplegic SE and ocular biometrics accurately estimate cycloplegic SE in children and adolescents, providing a practical alternative for large-scale refractive-error surveillance when cycloplegia is impractical.

利用非独眼瘫痪数据和机器学习预测儿童和青少年独眼瘫痪的球面等效折射-中国,2020-2024。
简介:单眼麻痹性屈光是评估儿童屈光不正的金标准。然而,后勤方面的限制阻碍了它在大规模调查中的实施。方法:对2020-2024年在中国10个省级行政区开展的全国眼健康调查数据进行分析。5-18岁的参与者接受了标准化的非睫状体麻痹和睫状体麻痹自屈光、轴长(AL)、角膜半径(CR)和AL/CR测量。训练随机森林和XGBoost模型,使用非独眼瘫痪SE、未矫正视力(UCVA)和生物特征参数来预测独眼瘫痪球形当量(SE)。使用R2、均方根误差(RMSE)和Bland-Altman分析对性能进行评估。结果:两种模型均表现出较强的预测性能。在测试集中,随机森林达到R2=0.88, RMSE=0.55屈光度(D),而XGBoost达到R2=0.89, RMSE=0.54 D。非独眼瘫痪SE、AL/CR比、AL和UCVA始终是最重要的预测因子。预测的SE与独眼瘫痪的SE有很强的一致性,残差极小。结论:结合非睫状体麻痹性SE和眼部生物识别技术的机器学习模型可以准确地估计儿童和青少年的睫状体麻痹性SE,当睫状体麻痹无法实现时,为大规模屈光误差监测提供了一种实用的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信