Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics.

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-28 DOI:10.3390/polym17192628
Mengke Yan, Yushu Lai, Yiwei Zhang, Lin Yang, Yan Zheng, Tianlong Wen, Cunxi Pan
{"title":"Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics.","authors":"Mengke Yan, Yushu Lai, Yiwei Zhang, Lin Yang, Yan Zheng, Tianlong Wen, Cunxi Pan","doi":"10.3390/polym17192628","DOIUrl":null,"url":null,"abstract":"<p><p>CFRP is extensively utilized in the manufacturing of aerospace equipment owing to its distinctive properties, and hole-making processing continues to be the predominant processing method for this material. However, due to the anisotropy of CFRP, in its processing process, processing damage appears easily, such as stratification, fiber tearing, burrs, etc. These damages will seriously affect the performance of CFRP components in the service process. This work employs acoustic emission (AE) and infrared thermography (IT) techniques to analyze the characteristics of AE signals and temperature signals generated during the CFRP drilling process. Fast Fourier transform (FFT) and short-time Fourier transform (STFT) are used to process the collected AE signals. And in combination with the actual damage morphology, the material removal behavior during the drilling process and the AE signal characteristics corresponding to processing defects are studied. The results show that the time-frequency graph and root mean square (RMS) curve of the AE signal can accurately distinguish the different stages of the drilling process. Through the analysis of the frequency domain characteristics of the AE signal, the specific frequency range of the damage mode of the CFRP composite material during drilling is determined. This paper aims to demonstrate the feasibility of real-time monitoring of the drilling process. By analyzing the relationship between the RMS values of acoustic emission signals and hole surface topography under different drilling parameters, it provides a new approach for the research on online monitoring of CFRP drilling damage and improvement of CFRP machining quality.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526748/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192628","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

CFRP is extensively utilized in the manufacturing of aerospace equipment owing to its distinctive properties, and hole-making processing continues to be the predominant processing method for this material. However, due to the anisotropy of CFRP, in its processing process, processing damage appears easily, such as stratification, fiber tearing, burrs, etc. These damages will seriously affect the performance of CFRP components in the service process. This work employs acoustic emission (AE) and infrared thermography (IT) techniques to analyze the characteristics of AE signals and temperature signals generated during the CFRP drilling process. Fast Fourier transform (FFT) and short-time Fourier transform (STFT) are used to process the collected AE signals. And in combination with the actual damage morphology, the material removal behavior during the drilling process and the AE signal characteristics corresponding to processing defects are studied. The results show that the time-frequency graph and root mean square (RMS) curve of the AE signal can accurately distinguish the different stages of the drilling process. Through the analysis of the frequency domain characteristics of the AE signal, the specific frequency range of the damage mode of the CFRP composite material during drilling is determined. This paper aims to demonstrate the feasibility of real-time monitoring of the drilling process. By analyzing the relationship between the RMS values of acoustic emission signals and hole surface topography under different drilling parameters, it provides a new approach for the research on online monitoring of CFRP drilling damage and improvement of CFRP machining quality.

基于声发射特性的碳纤维增强聚合物钻孔表面质量分析。
由于其独特的性能,CFRP被广泛应用于航空航天设备的制造,而制孔加工仍然是该材料的主要加工方法。然而,由于CFRP的各向异性,在其加工过程中容易出现加工损伤,如分层、纤维撕裂、毛刺等。这些损伤将严重影响碳纤维复合材料构件在使用过程中的性能。本文采用声发射(AE)和红外热成像(IT)技术,分析了CFRP钻井过程中产生的声发射信号和温度信号的特征。采用快速傅立叶变换(FFT)和短时傅立叶变换(STFT)对采集的声发射信号进行处理。并结合实际损伤形态,研究了钻孔过程中材料的去除行为以及加工缺陷对应的声发射信号特征。结果表明,声发射信号的时频图和均方根曲线能够准确区分钻井过程的不同阶段。通过对声发射信号的频域特征分析,确定了CFRP复合材料在钻孔过程中损伤模式的具体频率范围。本文旨在论证钻井过程实时监控的可行性。通过分析不同钻孔参数下声发射信号均方根值与孔表面形貌的关系,为CFRP钻孔损伤在线监测研究和提高CFRP加工质量提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信