Rebecca Olanrewaju, Yuefang Jiang, Thao Nguyen, David Kazmer
{"title":"Influence of Shape-Forming Elements on Microstructure and Mechanical Properties in Coextruded Thermoplastic Composites.","authors":"Rebecca Olanrewaju, Yuefang Jiang, Thao Nguyen, David Kazmer","doi":"10.3390/polym17192703","DOIUrl":null,"url":null,"abstract":"<p><p>The immiscibility of most polymers leads to poor interfacial adhesion in blends, a critical challenge that often limits the mechanical performance of polymer composites. This research introduces shape-forming elements (SFEs), a novel class of coextrusion dies designed to create additional geometric complexity and control over interfacial architecture. Specifically inspired by Julia Set and T-Square fractals, SFEs were simulated, prototyped, and found to be effective in coextrusion of different-colored polymer clays. The SFEs were employed to coextrude architected composites consisting of a liquid crystalline polymer (Vectra A950) and a cycloaliphatic polyamide (Trogamid CX7323). Mechanical testing revealed a strong positive correlation between the draw ratio and both the tensile modulus (adjusted R<sup>2</sup> = 0.94) and tensile stress at break (adjusted R<sup>2</sup> = 0.84). However, experimental cross-sections significantly differed from simulation results. These discrepancies were attributed to interfacial instabilities caused by material incompatibility between the two polymers and potential moisture-induced defects. This finding highlights critical challenges that arise during practical processing, emphasizing the importance of addressing polymer compatibility and moisture management to realize the full potential of SFEs in designing advanced polymer composites with targeted properties.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192703","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The immiscibility of most polymers leads to poor interfacial adhesion in blends, a critical challenge that often limits the mechanical performance of polymer composites. This research introduces shape-forming elements (SFEs), a novel class of coextrusion dies designed to create additional geometric complexity and control over interfacial architecture. Specifically inspired by Julia Set and T-Square fractals, SFEs were simulated, prototyped, and found to be effective in coextrusion of different-colored polymer clays. The SFEs were employed to coextrude architected composites consisting of a liquid crystalline polymer (Vectra A950) and a cycloaliphatic polyamide (Trogamid CX7323). Mechanical testing revealed a strong positive correlation between the draw ratio and both the tensile modulus (adjusted R2 = 0.94) and tensile stress at break (adjusted R2 = 0.84). However, experimental cross-sections significantly differed from simulation results. These discrepancies were attributed to interfacial instabilities caused by material incompatibility between the two polymers and potential moisture-induced defects. This finding highlights critical challenges that arise during practical processing, emphasizing the importance of addressing polymer compatibility and moisture management to realize the full potential of SFEs in designing advanced polymer composites with targeted properties.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.