Isothermal Crystallization Kinetics and Their Effect on the Molding Process and Mechanical Properties of PAEK and PEEK.

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-10-09 DOI:10.3390/polym17192713
Jindong Zhang, Kun Yu, Yunfeng Luo, Weidong Li, Xiangyu Zhong, Gang Liu, Jianwen Bao, Chunhai Chen
{"title":"Isothermal Crystallization Kinetics and Their Effect on the Molding Process and Mechanical Properties of PAEK and PEEK.","authors":"Jindong Zhang, Kun Yu, Yunfeng Luo, Weidong Li, Xiangyu Zhong, Gang Liu, Jianwen Bao, Chunhai Chen","doi":"10.3390/polym17192713","DOIUrl":null,"url":null,"abstract":"<p><p>The crystallization behavior of poly(aryletherketone) (PAEK) determines its applicable molding process and profoundly affects its mechanical properties. However, research on the crystallization behavior of new PAEKs and their impact on performance is still insufficient. In this work, the isothermal crystallization behavior of a novel PAEK was studied and compared with that of standard poly(etheretherketone) (PEEK). The influence of molding temperatures on the mechanical properties of thermoplastics was revealed by controlling the crystallization temperatures and analyzing the crystallization behavior. The results indicate that due to the disruption of the molecular structure regularity of PAEK, its melting temperature for primary crystallization is generally about 30 °C lower than that of PEEK, which is beneficial for its molding at lower temperatures. At the same undercooling level, the crystallization rate of PAEK is lower than that of PEEK, making it easier to control the crystallinity of PAEK through process parameters. The crystallinity of the thermoplastics increases with the increase in soaking time, thereby improving their tensile strength and modulus. The maximum crystallinity of PAEK is approximately 20.5%, which is lower than PEEK's value of 31.8%. Therefore, under the same undercooling condition, the tensile strength and modulus of PEEK increase by up to 29.5% and 17.1%, respectively, compared to PAEK. Therefore, by precisely controlling the molding process parameters of PAEK, their crystallization behavior can be managed, enabling the achievement of various properties as needed.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192713","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The crystallization behavior of poly(aryletherketone) (PAEK) determines its applicable molding process and profoundly affects its mechanical properties. However, research on the crystallization behavior of new PAEKs and their impact on performance is still insufficient. In this work, the isothermal crystallization behavior of a novel PAEK was studied and compared with that of standard poly(etheretherketone) (PEEK). The influence of molding temperatures on the mechanical properties of thermoplastics was revealed by controlling the crystallization temperatures and analyzing the crystallization behavior. The results indicate that due to the disruption of the molecular structure regularity of PAEK, its melting temperature for primary crystallization is generally about 30 °C lower than that of PEEK, which is beneficial for its molding at lower temperatures. At the same undercooling level, the crystallization rate of PAEK is lower than that of PEEK, making it easier to control the crystallinity of PAEK through process parameters. The crystallinity of the thermoplastics increases with the increase in soaking time, thereby improving their tensile strength and modulus. The maximum crystallinity of PAEK is approximately 20.5%, which is lower than PEEK's value of 31.8%. Therefore, under the same undercooling condition, the tensile strength and modulus of PEEK increase by up to 29.5% and 17.1%, respectively, compared to PAEK. Therefore, by precisely controlling the molding process parameters of PAEK, their crystallization behavior can be managed, enabling the achievement of various properties as needed.

Abstract Image

Abstract Image

Abstract Image

PAEK和PEEK的等温结晶动力学及其对成型工艺和力学性能的影响。
聚芳醚酮(PAEK)的结晶行为决定了其适用的成型工艺,并深刻影响其力学性能。然而,对新型paek的结晶行为及其对性能影响的研究仍然不足。本文研究了一种新型聚醚酮(PAEK)的等温结晶行为,并与标准聚醚酮(PEEK)的等温结晶行为进行了比较。通过控制结晶温度和分析结晶行为,揭示了成型温度对热塑性塑料力学性能的影响。结果表明:由于PAEK的分子结构规律被破坏,其初次结晶的熔融温度一般比PEEK低30℃左右,这有利于其在较低温度下成型;在相同过冷度下,PAEK的结晶速率低于PEEK,这使得通过工艺参数控制PAEK的结晶度更加容易。随着保温时间的延长,热塑性塑料的结晶度增加,从而提高了热塑性塑料的抗拉强度和模量。PAEK的最大结晶度约为20.5%,低于PEEK的31.8%。因此,在相同过冷条件下,PEEK的抗拉强度和模量分别比PAEK提高了29.5%和17.1%。因此,通过精确控制PAEK的成型工艺参数,可以控制其结晶行为,从而实现所需的各种性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信