{"title":"Electropolymerized PAA as a Functional Matrix for CeO<sub>2</sub>-NiO Hybrid Electrocatalysts for Efficient Water Oxidation.","authors":"Mrunal Bhosale, Pritam J Morankar, Yeonsu Lee, Hajin Seo, Chan-Wook Jeon","doi":"10.3390/polym17192631","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical water splitting has emerged as a pivotal strategy for advancing sustainable and renewable energy technologies. However, its practical deployment is often hampered by sluggish reaction kinetics, large overpotentials, and the high cost of efficient electrocatalysts. To overcome these critical challenges, a novel bifunctional electrocatalyst based on electropolymerized CeO<sub>2</sub>-NiO with polyacrylic acid (Ce-Ni-PAA) has been rationally engineered for overall water splitting. The strategic incorporation of conductive polymer framework enables effective modulation of the local electronic structure, enhances charge transport pathways, and maximizes the density of electrochemically accessible active sites, thereby substantially boosting catalytic performance. When evaluated in a 1 M KOH alkaline medium, the optimized Ce-Ni-PAA<sub>0.5</sub>/NF hybrid demonstrates remarkable catalytic activity with 366.5 mV overpotential at 50 mA cm<sup>-2</sup>, coupled with lower Tafel slope of 93.5 mV dec<sup>-1</sup>. Additionally, the Ce-Ni-PAA<sub>0.5</sub>/NF electrocatalyst exhibits exceptional ECSA of 1092.3 cm<sup>2</sup>, which confirms the presence of a significantly larger number of electrochemically active sites. The electrocatalyst retains its performance even after 5000 continuous cycles of operation. The superior performance is attributed to the synergistic effects arising from the enriched composition, efficient electron transport channels, and abundant catalytic centers. Collectively, this study not only highlights the significance of rational structural and compositional design but also offers valuable insights toward the development of next-generation, cost-effective bifunctional electrocatalysts with strong potential for scalable water splitting and clean energy applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17192631","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical water splitting has emerged as a pivotal strategy for advancing sustainable and renewable energy technologies. However, its practical deployment is often hampered by sluggish reaction kinetics, large overpotentials, and the high cost of efficient electrocatalysts. To overcome these critical challenges, a novel bifunctional electrocatalyst based on electropolymerized CeO2-NiO with polyacrylic acid (Ce-Ni-PAA) has been rationally engineered for overall water splitting. The strategic incorporation of conductive polymer framework enables effective modulation of the local electronic structure, enhances charge transport pathways, and maximizes the density of electrochemically accessible active sites, thereby substantially boosting catalytic performance. When evaluated in a 1 M KOH alkaline medium, the optimized Ce-Ni-PAA0.5/NF hybrid demonstrates remarkable catalytic activity with 366.5 mV overpotential at 50 mA cm-2, coupled with lower Tafel slope of 93.5 mV dec-1. Additionally, the Ce-Ni-PAA0.5/NF electrocatalyst exhibits exceptional ECSA of 1092.3 cm2, which confirms the presence of a significantly larger number of electrochemically active sites. The electrocatalyst retains its performance even after 5000 continuous cycles of operation. The superior performance is attributed to the synergistic effects arising from the enriched composition, efficient electron transport channels, and abundant catalytic centers. Collectively, this study not only highlights the significance of rational structural and compositional design but also offers valuable insights toward the development of next-generation, cost-effective bifunctional electrocatalysts with strong potential for scalable water splitting and clean energy applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.