Physics-embedded neural state-space module for single-shot lens-free on-chip microscopy.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-10-15 DOI:10.1364/OL.571248
Pengcheng Jia, Sida Gao, Ziyang Li, Zhengyu Wu, Guancheng Huang, Yao Wu, Yutong Li, Shutian Liu, Jinghan Li, Zhengjun Liu
{"title":"Physics-embedded neural state-space module for single-shot lens-free on-chip microscopy.","authors":"Pengcheng Jia, Sida Gao, Ziyang Li, Zhengyu Wu, Guancheng Huang, Yao Wu, Yutong Li, Shutian Liu, Jinghan Li, Zhengjun Liu","doi":"10.1364/OL.571248","DOIUrl":null,"url":null,"abstract":"<p><p>Lens-free on-chip microscopy (LFOCM) enables large-field-of-view, high-throughput quantitative imaging by capturing diffraction holograms directly at the sensor plane, eliminating the need for bulky optics and mechanical scanning. Conventional reconstruction pipelines, however, suffer from inherent noise amplification due to their primary reliance on physics-based priors. To overcome this limitation, we developed a physics-embedded neural state-space framework that incorporates diffraction physics for single-shot LFOCM reconstruction. This physics-constrained approach integrates a dual-branch architecture that combines local inductive bias with global modeling, enabling unsupervised recovery of high-fidelity quantitative amplitude and phase distributions. Comprehensive validation demonstrates state-of-the-art noise robustness and reconstruction fidelity, achieving simultaneous artifact suppression and resolution preservation.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 20","pages":"6357-6360"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.571248","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lens-free on-chip microscopy (LFOCM) enables large-field-of-view, high-throughput quantitative imaging by capturing diffraction holograms directly at the sensor plane, eliminating the need for bulky optics and mechanical scanning. Conventional reconstruction pipelines, however, suffer from inherent noise amplification due to their primary reliance on physics-based priors. To overcome this limitation, we developed a physics-embedded neural state-space framework that incorporates diffraction physics for single-shot LFOCM reconstruction. This physics-constrained approach integrates a dual-branch architecture that combines local inductive bias with global modeling, enabling unsupervised recovery of high-fidelity quantitative amplitude and phase distributions. Comprehensive validation demonstrates state-of-the-art noise robustness and reconstruction fidelity, achieving simultaneous artifact suppression and resolution preservation.

用于单镜头无透镜芯片显微镜的物理嵌入神经状态空间模块。
无透镜片上显微镜(LFOCM)通过直接在传感器平面捕获衍射全息图,实现大视场,高通量定量成像,消除了对笨重的光学和机械扫描的需要。然而,由于传统的重建管道主要依赖于基于物理的先验,因此存在固有的噪声放大问题。为了克服这一限制,我们开发了一个物理嵌入的神经状态空间框架,该框架结合了单发LFOCM重建的衍射物理。这种物理约束的方法集成了双分支架构,将局部归纳偏置与全局建模相结合,实现了高保真定量振幅和相位分布的无监督恢复。综合验证展示了最先进的噪声鲁棒性和重建保真度,同时实现了伪影抑制和分辨率保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信