A formal FeIII/V redox couple in an intercalation electrode.

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hari Ramachandran, Edward W Mu, Eder G Lomeli, Augustin Braun, Masato Goto, Kuan H Hsu, Jue Liu, Zhelong Jiang, Kipil Lim, Grace M Busse, Brian Moritz, Joshua J Kas, John Vinson, John J Rehr, Jungjin Park, Iwnetim I Abate, Yuichi Shimakawa, Edward I Solomon, Wanli Yang, William E Gent, Thomas P Devereaux, William C Chueh
{"title":"A formal Fe<sup>III/V</sup> redox couple in an intercalation electrode.","authors":"Hari Ramachandran, Edward W Mu, Eder G Lomeli, Augustin Braun, Masato Goto, Kuan H Hsu, Jue Liu, Zhelong Jiang, Kipil Lim, Grace M Busse, Brian Moritz, Joshua J Kas, John Vinson, John J Rehr, Jungjin Park, Iwnetim I Abate, Yuichi Shimakawa, Edward I Solomon, Wanli Yang, William E Gent, Thomas P Devereaux, William C Chueh","doi":"10.1038/s41563-025-02356-x","DOIUrl":null,"url":null,"abstract":"<p><p>Iron redox cycling between low-valent oxidation states of Fe<sup>II</sup> and Fe<sup>III</sup> drives crucial processes in nature. The Fe<sup>II/III</sup> redox couple charge compensates the cycling of lithium iron phosphate, a positive electrode (cathode) for lithium-ion batteries. High-valent iron redox couples, involving formal oxidation higher than Fe<sup>III</sup>, could deliver higher electrochemical potentials and energy densities. However, because of the instability of high-valent Fe electrodes, they have proven difficult to probe and exploit in intercalation systems. Here we report and characterize a formal Fe<sup>III/V</sup> redox couple by revisiting the charge compensation mechanism of (de)lithiation in Li<sub>4</sub>FeSbO<sub>6</sub>. Valence-sensitive experimental and computational core-level spectroscopy reveal a direct transition from Fe<sup>III</sup> (3d<sup>5</sup>) to a negative-charge-transfer Fe<sup>V</sup> (3d<sup>5</sup>L<sup>2</sup>) ground state on delithiation, without forming Fe<sup>IV</sup>, or oxygen dimers. We identify that the cation ordering in Li<sub>4</sub>FeSbO<sub>6</sub> drives a templated phase transition to stabilize the unique Fe<sup>V</sup> species and demonstrate that disrupting cation ordering suppresses the Fe<sup>III/V</sup> redox couple. Exhibiting resistance to calendar aging, high operating potential and low voltage hysteresis, the Fe<sup>III/V</sup> redox couple in Li<sub>4</sub>FeSbO<sub>6</sub> provides a framework for developing sustainable, Fe-based intercalation cathodes for high-voltage applications.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":" ","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02356-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iron redox cycling between low-valent oxidation states of FeII and FeIII drives crucial processes in nature. The FeII/III redox couple charge compensates the cycling of lithium iron phosphate, a positive electrode (cathode) for lithium-ion batteries. High-valent iron redox couples, involving formal oxidation higher than FeIII, could deliver higher electrochemical potentials and energy densities. However, because of the instability of high-valent Fe electrodes, they have proven difficult to probe and exploit in intercalation systems. Here we report and characterize a formal FeIII/V redox couple by revisiting the charge compensation mechanism of (de)lithiation in Li4FeSbO6. Valence-sensitive experimental and computational core-level spectroscopy reveal a direct transition from FeIII (3d5) to a negative-charge-transfer FeV (3d5L2) ground state on delithiation, without forming FeIV, or oxygen dimers. We identify that the cation ordering in Li4FeSbO6 drives a templated phase transition to stabilize the unique FeV species and demonstrate that disrupting cation ordering suppresses the FeIII/V redox couple. Exhibiting resistance to calendar aging, high operating potential and low voltage hysteresis, the FeIII/V redox couple in Li4FeSbO6 provides a framework for developing sustainable, Fe-based intercalation cathodes for high-voltage applications.

嵌入电极中的FeIII/V氧化还原对。
铁在FeII和FeIII的低价氧化态之间的氧化还原循环驱动着自然界的关键过程。FeII/III氧化还原偶电荷补偿磷酸铁锂的循环,磷酸铁锂是锂离子电池的正极(负极)。高价铁氧化还原偶比FeIII的形式氧化程度更高,可以提供更高的电化学电位和能量密度。然而,由于高价铁电极的不稳定性,它们已被证明难以在插层体系中探测和利用。在这里,我们通过重新考察Li4FeSbO6中(de)锂化的电荷补偿机制,报道并表征了一种形式的FeIII/V氧化还原对。价敏感的实验和计算核能级光谱揭示了从FeIII (3d5)到负电荷转移FeV (3d5L2)基态的直接转变,而不形成FeIV或氧二聚体。我们发现Li4FeSbO6中的阳离子顺序驱动模板化相变以稳定独特的FeV物种,并证明破坏阳离子顺序抑制FeIII/V氧化还原对。Li4FeSbO6中的FeIII/V氧化还原对具有抗日历老化、高工作电位和低电压滞后的特点,为开发可持续的、用于高压应用的铁基插入阴极提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信