Mengyu Shang, Yinuo Li, Qiuyu Cao, Jingxuan Ren, Yuqiang Zeng, Jinxin Wang, Rachel V L Gonzalez, Xiaohui Zhang
{"title":"A motif preferred adenine base editor with minimal bystander and off-targets editing.","authors":"Mengyu Shang, Yinuo Li, Qiuyu Cao, Jingxuan Ren, Yuqiang Zeng, Jinxin Wang, Rachel V L Gonzalez, Xiaohui Zhang","doi":"10.1038/s41467-025-64203-6","DOIUrl":null,"url":null,"abstract":"<p><p>47% of hereditable diseases are caused by single C•G-to-T•A base conversions, which means efficient A-to-G base editing tools (ABEs) have great potential for the treatment of these diseases. However, the existing efficient ABEs, while catalyzing targeted A-to-G conversion, cause high A or C bystander editing and off-target events, which poses safety concerns for their clinical applications. To overcome this shortcoming, we have developed ABE8e-YA (ABE8e with TadA-8e A48E) for efficient and accurate editing of As in YA motifs with YAY > YAR (Y = T or C, R = A or G) hierarchy through structure-oriented rational design. Compared with ABE3.1, which is currently the only ABE version with a YAC motif preference, ABE8e-YA exhibits an average A-to-G editing efficiency improvement of an up to 3.1-fold increase in the indicated YA motif while maintaining reduced bystander C editing and minimized DNA or RNA off-targets. Additionally, we demonstrate that ABE8e-YA efficiently and precisely corrects pathogenic mutations in human cells, suggesting its high suitability for addressing 9.3% of pathogenic point mutations, higher than that of ABE8e and ABE9. Moreover, by using ABE8e-YA, we efficiently and precisely generate hypocholesterolemia and tail-loss mouse models mimicking human-associated disease, as well as performed in vivo mouse proprotein convertase subtilisin/kexin type 9 (Pcsk9) base editing for hypercholesterolemia gene therapy. Together these data indicate its great potential in broad applications for disease modeling and gene therapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"9153"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528748/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64203-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
47% of hereditable diseases are caused by single C•G-to-T•A base conversions, which means efficient A-to-G base editing tools (ABEs) have great potential for the treatment of these diseases. However, the existing efficient ABEs, while catalyzing targeted A-to-G conversion, cause high A or C bystander editing and off-target events, which poses safety concerns for their clinical applications. To overcome this shortcoming, we have developed ABE8e-YA (ABE8e with TadA-8e A48E) for efficient and accurate editing of As in YA motifs with YAY > YAR (Y = T or C, R = A or G) hierarchy through structure-oriented rational design. Compared with ABE3.1, which is currently the only ABE version with a YAC motif preference, ABE8e-YA exhibits an average A-to-G editing efficiency improvement of an up to 3.1-fold increase in the indicated YA motif while maintaining reduced bystander C editing and minimized DNA or RNA off-targets. Additionally, we demonstrate that ABE8e-YA efficiently and precisely corrects pathogenic mutations in human cells, suggesting its high suitability for addressing 9.3% of pathogenic point mutations, higher than that of ABE8e and ABE9. Moreover, by using ABE8e-YA, we efficiently and precisely generate hypocholesterolemia and tail-loss mouse models mimicking human-associated disease, as well as performed in vivo mouse proprotein convertase subtilisin/kexin type 9 (Pcsk9) base editing for hypercholesterolemia gene therapy. Together these data indicate its great potential in broad applications for disease modeling and gene therapy.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.