gReLU: a comprehensive framework for DNA sequence modeling and design.

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Avantika Lal, Laura Gunsalus, Surag Nair, Tommaso Biancalani, Gokcen Eraslan
{"title":"gReLU: a comprehensive framework for DNA sequence modeling and design.","authors":"Avantika Lal, Laura Gunsalus, Surag Nair, Tommaso Biancalani, Gokcen Eraslan","doi":"10.1038/s41592-025-02868-z","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning models trained on DNA sequences can predict cell-type-specific regulatory activity, reveal cis-regulatory grammar, prioritize genetic variants and design synthetic DNA. However, building and interpreting these models correctly remains difficult, and models and software built by different groups are often not interoperable. Here we present gReLU, a comprehensive software framework that enables advanced sequence modeling pipelines, including data preprocessing, modeling, evaluation, interpretation, variant effect prediction and regulatory element design.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02868-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models trained on DNA sequences can predict cell-type-specific regulatory activity, reveal cis-regulatory grammar, prioritize genetic variants and design synthetic DNA. However, building and interpreting these models correctly remains difficult, and models and software built by different groups are often not interoperable. Here we present gReLU, a comprehensive software framework that enables advanced sequence modeling pipelines, including data preprocessing, modeling, evaluation, interpretation, variant effect prediction and regulatory element design.

gReLU: DNA序列建模和设计的综合框架。
经过DNA序列训练的深度学习模型可以预测细胞类型特异性调控活动,揭示顺式调控语法,优先考虑遗传变异和设计合成DNA。然而,正确地构建和解释这些模型仍然很困难,并且由不同的团队构建的模型和软件通常是不可互操作的。在这里,我们介绍了gReLU,这是一个全面的软件框架,可以实现高级序列建模管道,包括数据预处理,建模,评估,解释,变异效应预测和调节元件设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信