Mario Ceddia, Tea Romasco, Giulia Marchioli, Alessandro Cipollina, Luca Comuzzi, Adriano Piattelli, Natalia Di Pietro, Bartolomeo Trentadue
{"title":"The Effect of Varying Abutment Heights on Stress Distribution in Different Bone Densities: A Finite Element Analysis Study.","authors":"Mario Ceddia, Tea Romasco, Giulia Marchioli, Alessandro Cipollina, Luca Comuzzi, Adriano Piattelli, Natalia Di Pietro, Bartolomeo Trentadue","doi":"10.3390/ma18194561","DOIUrl":null,"url":null,"abstract":"<p><p>The biomechanical performance of dental implants is affected by both abutment height and bone quality, which influence stress distribution around the implant and the preservation of surrounding bone. This study used three-dimensional finite element analysis (FEA) to assess the combined effects of these factors. Two implants with abutment heights of 3 mm and 6 mm were modeled and placed in mandibular bone blocks representing class II and class IV bone, according to Lekholm and Zarb's classification. A static load of 150 N, inclined at 6° buccolingually, was applied during the analysis. The simulation results showed that increasing the abutment height raises stress on the implant, leading to greater stress transfer to the peri-implant bone. The von Mises stress levels were higher in the crestal cortical bone of the class IV model with a 6 mm abutment (126 MPa). Notably, peak stresses exceeding 300 MPa were localized at the implant-abutment connection. These findings suggest that abutment height is a critical factor that negatively affects the biomechanical response, especially in low-density bone, although longer abutments offer biological benefits. This highlights the importance of minimizing the crown-to-implant ratio to reduce overload, preserve bone, and prevent mechanical failure complications.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 19","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18194561","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The biomechanical performance of dental implants is affected by both abutment height and bone quality, which influence stress distribution around the implant and the preservation of surrounding bone. This study used three-dimensional finite element analysis (FEA) to assess the combined effects of these factors. Two implants with abutment heights of 3 mm and 6 mm were modeled and placed in mandibular bone blocks representing class II and class IV bone, according to Lekholm and Zarb's classification. A static load of 150 N, inclined at 6° buccolingually, was applied during the analysis. The simulation results showed that increasing the abutment height raises stress on the implant, leading to greater stress transfer to the peri-implant bone. The von Mises stress levels were higher in the crestal cortical bone of the class IV model with a 6 mm abutment (126 MPa). Notably, peak stresses exceeding 300 MPa were localized at the implant-abutment connection. These findings suggest that abutment height is a critical factor that negatively affects the biomechanical response, especially in low-density bone, although longer abutments offer biological benefits. This highlights the importance of minimizing the crown-to-implant ratio to reduce overload, preserve bone, and prevent mechanical failure complications.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.