Computational Homogenisation and Identification of Auxetic Structures with Interval Parameters.

IF 3.2 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-09-30 DOI:10.3390/ma18194554
Witold Beluch, Marcin Hatłas, Jacek Ptaszny, Anna Kloc-Ptaszna
{"title":"Computational Homogenisation and Identification of Auxetic Structures with Interval Parameters.","authors":"Witold Beluch, Marcin Hatłas, Jacek Ptaszny, Anna Kloc-Ptaszna","doi":"10.3390/ma18194554","DOIUrl":null,"url":null,"abstract":"<p><p>The subject of this paper is the computational homogenisation and identification of heterogeneous materials in the form of auxetic structures made of materials with nonlinear characteristics. It is assumed that some of the material and topological parameters of the auxetic structures are uncertain and are modelled as interval numbers. Directed interval arithmetic is used to minimise the width of the resulting intervals. The finite element method is employed to solve the boundary value problem, and artificial neural network response surfaces are utilised to reduce the computational effort. In order to solve the identification task, the Pareto approach is adopted, and a multi-objective evolutionary algorithm is used as the global optimisation method. The results obtained from computational homogenisation under uncertainty demonstrate the efficacy of the proposed methodology in capturing material behaviour, thereby underscoring the significance of incorporating uncertainty into material properties. The identification results demonstrate the successful identification of material parameters at the microscopic scale from macroscopic data involving the interval description of the process of deformation of auxetic structures in a nonlinear regime.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 19","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18194554","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The subject of this paper is the computational homogenisation and identification of heterogeneous materials in the form of auxetic structures made of materials with nonlinear characteristics. It is assumed that some of the material and topological parameters of the auxetic structures are uncertain and are modelled as interval numbers. Directed interval arithmetic is used to minimise the width of the resulting intervals. The finite element method is employed to solve the boundary value problem, and artificial neural network response surfaces are utilised to reduce the computational effort. In order to solve the identification task, the Pareto approach is adopted, and a multi-objective evolutionary algorithm is used as the global optimisation method. The results obtained from computational homogenisation under uncertainty demonstrate the efficacy of the proposed methodology in capturing material behaviour, thereby underscoring the significance of incorporating uncertainty into material properties. The identification results demonstrate the successful identification of material parameters at the microscopic scale from macroscopic data involving the interval description of the process of deformation of auxetic structures in a nonlinear regime.

Abstract Image

Abstract Image

Abstract Image

区间参数辅助结构的计算均匀化与识别。
本文的主题是计算均质化和非均质材料的识别形式的auxetic结构的材料与非线性特性。假设缺失结构的一些材料参数和拓扑参数是不确定的,用区间数建模。有向区间算法用于最小化结果区间的宽度。采用有限元法求解边值问题,并利用人工神经网络响应面来减少计算量。为了解决识别问题,采用Pareto方法,并采用多目标进化算法作为全局优化方法。不确定性下计算均质化的结果证明了所提出的方法在捕获材料行为方面的有效性,从而强调了将不确定性纳入材料特性的重要性。识别结果表明,从宏观数据中成功地识别了材料的微观参数,这些宏观数据涉及非线性状态下的形变过程的区间描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信