Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application.

IF 3.2 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-09-30 DOI:10.3390/ma18194556
Jiale Wang, Haiyang Chen, Xiaxiao Tian, Dongxiao Hu, Yufan Liu, Jiayue Li, Ke Zhang, Hongliang Huang, Jie Yan, Bin Li
{"title":"Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application.","authors":"Jiale Wang, Haiyang Chen, Xiaxiao Tian, Dongxiao Hu, Yufan Liu, Jiayue Li, Ke Zhang, Hongliang Huang, Jie Yan, Bin Li","doi":"10.3390/ma18194556","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic structures inspired by evolutionary optimized biological systems offer promising solutions to overcome current limitations in passive daytime radiative cooling (PDRC) technology, which efficiently scatters solar radiation through atmospheric windows and radiates surface heat into space without additional energy consumption. While structural biomimicry provides excellent optical performance and feasibility, its complex manufacturing and high costs limit scalability due to micro-nano fabrication constraints. Material-based biomimicry, utilizing environmentally friendly and abundant raw materials, offers greater scalability but requires improvements in mechanical durability. Adaptive biomimicry enables intelligent regulation with high responsiveness but faces challenges in system complexity, stability, and large-scale integration. These biologically derived strategies provide valuable insights for advancing radiative cooling devices. This review systematically summarizes recent progress, elucidates mechanisms of key biological structures for photothermal regulation, and explores their application potential across various fields. It also discusses current challenges and future research directions, aiming to promote deeper investigation and breakthroughs in biomimetic radiative cooling technologies.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 19","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18194556","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetic structures inspired by evolutionary optimized biological systems offer promising solutions to overcome current limitations in passive daytime radiative cooling (PDRC) technology, which efficiently scatters solar radiation through atmospheric windows and radiates surface heat into space without additional energy consumption. While structural biomimicry provides excellent optical performance and feasibility, its complex manufacturing and high costs limit scalability due to micro-nano fabrication constraints. Material-based biomimicry, utilizing environmentally friendly and abundant raw materials, offers greater scalability but requires improvements in mechanical durability. Adaptive biomimicry enables intelligent regulation with high responsiveness but faces challenges in system complexity, stability, and large-scale integration. These biologically derived strategies provide valuable insights for advancing radiative cooling devices. This review systematically summarizes recent progress, elucidates mechanisms of key biological structures for photothermal regulation, and explores their application potential across various fields. It also discusses current challenges and future research directions, aiming to promote deeper investigation and breakthroughs in biomimetic radiative cooling technologies.

仿生日间辐射冷却技术:应用前景与挑战。
受进化优化生物系统启发的仿生结构为克服目前被动日间辐射冷却(PDRC)技术的局限性提供了有希望的解决方案,该技术可以有效地通过大气窗口散射太阳辐射,并将表面热量辐射到太空中,而无需额外的能源消耗。虽然结构仿生具有优异的光学性能和可行性,但由于微纳制造的限制,其复杂的制造和高昂的成本限制了其可扩展性。基于材料的仿生学,利用环保和丰富的原材料,提供了更大的可扩展性,但需要提高机械耐用性。自适应仿生学能够实现高响应性的智能调控,但也面临着系统复杂性、稳定性和大规模集成等方面的挑战。这些生物衍生的策略为推进辐射冷却装置提供了有价值的见解。本文系统总结了近年来的研究进展,阐述了光热调控的关键生物结构的机制,并探讨了它们在各个领域的应用潜力。讨论了当前面临的挑战和未来的研究方向,旨在促进仿生辐射冷却技术的深入研究和突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信