Yao Liu, Jingjing Xie, Ruiliang Li, Jiankun Gao, Ming Li, Lin Sun
{"title":"Analysis of Subsurface Damage Based on K9 Glass Grinding.","authors":"Yao Liu, Jingjing Xie, Ruiliang Li, Jiankun Gao, Ming Li, Lin Sun","doi":"10.3390/ma18194558","DOIUrl":null,"url":null,"abstract":"<p><p>During the grinding process of K9 glass, various forms of surface damage-such as indentations and pitting-as well as subsurface damage-including cracks and residual stress-are generated. This paper focuses on the planetary grinding method utilizing bonded abrasives for both process research and subsurface damage detection. It examines the timeliness of grinding duration and analyzes the effects of abrasive grain size and grinding pressure on surface quality. Building upon the principle of differential etching, an improved HF chemical etching method is proposed to establish a relationship model that correlates the depth of subsurface damage with abrasive grain size, applied pressure, and surface roughness.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 19","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12526018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18194558","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
During the grinding process of K9 glass, various forms of surface damage-such as indentations and pitting-as well as subsurface damage-including cracks and residual stress-are generated. This paper focuses on the planetary grinding method utilizing bonded abrasives for both process research and subsurface damage detection. It examines the timeliness of grinding duration and analyzes the effects of abrasive grain size and grinding pressure on surface quality. Building upon the principle of differential etching, an improved HF chemical etching method is proposed to establish a relationship model that correlates the depth of subsurface damage with abrasive grain size, applied pressure, and surface roughness.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.