End-to-End Automated Segmentation Framework for Four-Dimensional Scanning Transmission Electron Microscopy Data.

IF 3 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Liu, Shengtong Zhang, Carolin B Wahl, Jiezhong Wu, Roberto Dos Reis, Chad A Mirkin, Vinayak P Dravid, Wei Chen, Daniel W Apley
{"title":"End-to-End Automated Segmentation Framework for Four-Dimensional Scanning Transmission Electron Microscopy Data.","authors":"Wei Liu, Shengtong Zhang, Carolin B Wahl, Jiezhong Wu, Roberto Dos Reis, Chad A Mirkin, Vinayak P Dravid, Wei Chen, Daniel W Apley","doi":"10.1093/mam/ozaf094","DOIUrl":null,"url":null,"abstract":"<p><p>Four-dimensional scanning transmission electron microscopy (4D-STEM) is powerful for rapidly characterizing arrays of nanoparticles produced via high-throughput synthesis. However, such 4D-STEM datasets typically contain thousands of nanoparticles, each characterized by thousands of diffraction patterns spatially distributed across the nanoparticle, necessitating efficient and comprehensive analysis. We propose an end-to-end segmentation framework to automatically segment each nanoparticle into regions with distinct composition/orientation of crystal grains, using only the 4D-STEM data. Bragg disk information is extracted in a physics-informed manner from the diffraction patterns at each spatial location and combined with the real space coordinates to form feature vectors. These feature vectors are then used as inputs to a Gaussian mixture model (GMM) to segment the nanoparticle into distinct regions. We also develop two visualization tools based on the GMM outputs to infer the interface transition and the degree of superposition. Our framework comprehensively integrates machine learning tools and physics knowledge, and provides a basis for substantially compressing enormous 4D-STEM datasets, e.g., by replacing the full 4D-STEM dataset for each nanoparticle with only a single set of Bragg disk features for each distinct crystal grain identified in the nanoparticle. We demonstrate the power of our framework by presenting results for real, complex datasets.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":"31 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozaf094","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Four-dimensional scanning transmission electron microscopy (4D-STEM) is powerful for rapidly characterizing arrays of nanoparticles produced via high-throughput synthesis. However, such 4D-STEM datasets typically contain thousands of nanoparticles, each characterized by thousands of diffraction patterns spatially distributed across the nanoparticle, necessitating efficient and comprehensive analysis. We propose an end-to-end segmentation framework to automatically segment each nanoparticle into regions with distinct composition/orientation of crystal grains, using only the 4D-STEM data. Bragg disk information is extracted in a physics-informed manner from the diffraction patterns at each spatial location and combined with the real space coordinates to form feature vectors. These feature vectors are then used as inputs to a Gaussian mixture model (GMM) to segment the nanoparticle into distinct regions. We also develop two visualization tools based on the GMM outputs to infer the interface transition and the degree of superposition. Our framework comprehensively integrates machine learning tools and physics knowledge, and provides a basis for substantially compressing enormous 4D-STEM datasets, e.g., by replacing the full 4D-STEM dataset for each nanoparticle with only a single set of Bragg disk features for each distinct crystal grain identified in the nanoparticle. We demonstrate the power of our framework by presenting results for real, complex datasets.

四维扫描透射电子显微镜数据的端到端自动分割框架。
四维扫描透射电子显微镜(4D-STEM)可以快速表征通过高通量合成产生的纳米颗粒阵列。然而,这样的4D-STEM数据集通常包含数千个纳米颗粒,每个纳米颗粒都具有数千个空间分布在纳米颗粒上的衍射模式,因此需要高效和全面的分析。我们提出了一个端到端分割框架,仅使用4D-STEM数据,自动将每个纳米颗粒分割成具有不同组成/晶粒取向的区域。布拉格盘信息以物理信息的方式从每个空间位置的衍射图案中提取,并与实际空间坐标结合形成特征向量。然后将这些特征向量作为高斯混合模型(GMM)的输入,将纳米颗粒分割成不同的区域。我们还开发了两个基于GMM输出的可视化工具来推断界面转移和叠加程度。我们的框架全面集成了机器学习工具和物理知识,并为大量压缩4D-STEM数据集提供了基础,例如,通过将每个纳米颗粒的完整4D-STEM数据集替换为纳米颗粒中识别的每个不同晶体颗粒的一组布拉格盘特征。我们通过展示真实、复杂数据集的结果来展示我们框架的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信