{"title":"The SGLT2 Inhibitor Dapagliflozin Disrupts the Cell Cycle at High Concentrations Without Altering Glycosphingolipid (De Novo)Biosynthesis.","authors":"Richard Jennemann, Roger Sandhoff","doi":"10.3390/ijms26199811","DOIUrl":null,"url":null,"abstract":"<p><p>Modern computational screening methods are valuable tools for repurposing approved drugs for novel therapeutic applications. They provide initial insights into alternative uses and may significantly shorten the lengthy process of drug development and regulatory approval. Treatment options for glycosphingolipidoses, lysosomal storage diseases involving glycosphingolipids (GSLs), are currently limited to a few drugs that inhibit de novo GSL biosynthesis, such as eliglustat and miglustat (Zavesca<sup>®</sup>). In the search for alternative drugs, dapagliflozin emerged as a promising candidate for off-target therapy. In the present study, we investigated whether dapagliflozin can indeed inhibit GSL synthesis, as predicted by previous computational analyses, and compared its effects with those of the glycosphingolipid synthesis inhibitor, the eliglustat analog Genz-123346, in murine 3T3 and Hepa 1-6 cell lines. While Genz-123346 significantly inhibited glycosphingolipid biosynthesis at concentrations as low as 1 µM, dapagliflozin, even up to 50 µM, had no effect on biosynthesis or de novo biosynthesis in either cell line. These results indicate that dapagliflozin, although assessing effects on the cell cycle, including proliferation at high concentrations, is not a suitable candidate for treating glycosphingolipid storage diseases by substrate reduction.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199811","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modern computational screening methods are valuable tools for repurposing approved drugs for novel therapeutic applications. They provide initial insights into alternative uses and may significantly shorten the lengthy process of drug development and regulatory approval. Treatment options for glycosphingolipidoses, lysosomal storage diseases involving glycosphingolipids (GSLs), are currently limited to a few drugs that inhibit de novo GSL biosynthesis, such as eliglustat and miglustat (Zavesca®). In the search for alternative drugs, dapagliflozin emerged as a promising candidate for off-target therapy. In the present study, we investigated whether dapagliflozin can indeed inhibit GSL synthesis, as predicted by previous computational analyses, and compared its effects with those of the glycosphingolipid synthesis inhibitor, the eliglustat analog Genz-123346, in murine 3T3 and Hepa 1-6 cell lines. While Genz-123346 significantly inhibited glycosphingolipid biosynthesis at concentrations as low as 1 µM, dapagliflozin, even up to 50 µM, had no effect on biosynthesis or de novo biosynthesis in either cell line. These results indicate that dapagliflozin, although assessing effects on the cell cycle, including proliferation at high concentrations, is not a suitable candidate for treating glycosphingolipid storage diseases by substrate reduction.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).