Tristan Russell, Elisa Formiconi, Mícheál Casey, Maíre McElroy, Patrick W G Mallon, Virginie W Gautier
{"title":"Viral Metagenomic Next-Generation Sequencing for One Health Discovery and Surveillance of (Re)Emerging Viruses: A Deep Review.","authors":"Tristan Russell, Elisa Formiconi, Mícheál Casey, Maíre McElroy, Patrick W G Mallon, Virginie W Gautier","doi":"10.3390/ijms26199831","DOIUrl":null,"url":null,"abstract":"<p><p>Viral metagenomic next-generation sequencing (vmNGS) has transformed our capacity for the untargeted detection and characterisation of (re)emerging zoonotic viruses, surpassing the limitations of traditional targeted diagnostics. In this review, we critically evaluate the current landscape of vmNGS, highlighting its integration within the One Health paradigm and its application to the surveillance and discovery of (re)emerging viruses at the human-animal-environment interface. We provide a detailed overview of vmNGS workflows including sample selection, nucleic acid extraction, host depletion, virus enrichment, sequencing platforms, and bioinformatic pipelines, all tailored to maximise sensitivity and specificity for diverse sample types. Through selected case studies, including SARS-CoV-2, mpox, Zika virus, and a novel henipavirus, we illustrate the impact of vmNGS in outbreak detection, genomic surveillance, molecular epidemiology, and the development of diagnostics and vaccines. The review further examines the relative strengths and limitations of vmNGS in both passive and active surveillance, addressing barriers such as cost, infrastructure requirements, and the need for interdisciplinary collaboration. By integrating molecular, ecological, and public health perspectives, vmNGS stands as a central tool for early warning, comprehensive monitoring, and informed intervention against (re)emerging viral threats, underscoring its critical role in global pandemic preparedness and zoonotic disease control.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199831","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Viral metagenomic next-generation sequencing (vmNGS) has transformed our capacity for the untargeted detection and characterisation of (re)emerging zoonotic viruses, surpassing the limitations of traditional targeted diagnostics. In this review, we critically evaluate the current landscape of vmNGS, highlighting its integration within the One Health paradigm and its application to the surveillance and discovery of (re)emerging viruses at the human-animal-environment interface. We provide a detailed overview of vmNGS workflows including sample selection, nucleic acid extraction, host depletion, virus enrichment, sequencing platforms, and bioinformatic pipelines, all tailored to maximise sensitivity and specificity for diverse sample types. Through selected case studies, including SARS-CoV-2, mpox, Zika virus, and a novel henipavirus, we illustrate the impact of vmNGS in outbreak detection, genomic surveillance, molecular epidemiology, and the development of diagnostics and vaccines. The review further examines the relative strengths and limitations of vmNGS in both passive and active surveillance, addressing barriers such as cost, infrastructure requirements, and the need for interdisciplinary collaboration. By integrating molecular, ecological, and public health perspectives, vmNGS stands as a central tool for early warning, comprehensive monitoring, and informed intervention against (re)emerging viral threats, underscoring its critical role in global pandemic preparedness and zoonotic disease control.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).