Seok-Hoon Han, Ji-Hwan Kim, Yewon Han, Sangjin Kim, Hyowon Jin, Won-Yung Lee
{"title":"Multiscale Interactome-Guided Discovery Candidate Herbs and Active Ingredients Against Hyperthyroidism by Biased Random Walk Algorithm.","authors":"Seok-Hoon Han, Ji-Hwan Kim, Yewon Han, Sangjin Kim, Hyowon Jin, Won-Yung Lee","doi":"10.3390/ijms26199789","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperthyroidism features excess thyroid hormone and a hypermetabolic state; although drugs and definitive therapies exist, mechanism-anchored options are still needed. We built a multiscale interactome and applied a biased random-walk diffusion model to prioritize herbal candidates, active ingredients, and mechanisms. Herb-compound records came from OASIS; targets from DrugBank, TTD, and STITCH; and disease genes from DisGeNET. For each herb and compound, we simulated diffusion profiles, computed the correlation with the hyperthyroidism profile, and assessed target overlap ratio. Herbs were ranked by correlation and <i>p</i> < 0.05 overlap, retaining those with ≥5 active compounds linked to disease targets. Top signals included <i>Geranii Herba</i> (0.021), Gastrodiae Rhizoma (0.012), and <i>Veratri Rhizoma Et Radix</i> (0.011), plus seven herbs at 0.010. Herb-disease relationships were strongly enriched. Enrichment analyses highlighted MAPK, PI3K-AKT, p53, HIF-1, and thyroid hormone signaling, with Gene Ontology terms for apoptosis/anoikis, inflammation, and RNA polymerase II-dependent transcription. Compound-level analysis recovered evidence-supported ellagic acid and diosgenin and proposed resveratrol, cardamomin, 20-hydroxyecdysone, and (Z)-anethole as novel candidates. Subnetwork mapping linked these compounds to phosphorylation, GPCR-cAMP/TSH signaling, and transcriptional control. This framework recapitulates known thyroid-modulating herbs and elevates underappreciated leads with testable mechanisms, supporting the discovery of multi-target therapeutics for hyperthyroidism.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12525224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199789","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperthyroidism features excess thyroid hormone and a hypermetabolic state; although drugs and definitive therapies exist, mechanism-anchored options are still needed. We built a multiscale interactome and applied a biased random-walk diffusion model to prioritize herbal candidates, active ingredients, and mechanisms. Herb-compound records came from OASIS; targets from DrugBank, TTD, and STITCH; and disease genes from DisGeNET. For each herb and compound, we simulated diffusion profiles, computed the correlation with the hyperthyroidism profile, and assessed target overlap ratio. Herbs were ranked by correlation and p < 0.05 overlap, retaining those with ≥5 active compounds linked to disease targets. Top signals included Geranii Herba (0.021), Gastrodiae Rhizoma (0.012), and Veratri Rhizoma Et Radix (0.011), plus seven herbs at 0.010. Herb-disease relationships were strongly enriched. Enrichment analyses highlighted MAPK, PI3K-AKT, p53, HIF-1, and thyroid hormone signaling, with Gene Ontology terms for apoptosis/anoikis, inflammation, and RNA polymerase II-dependent transcription. Compound-level analysis recovered evidence-supported ellagic acid and diosgenin and proposed resveratrol, cardamomin, 20-hydroxyecdysone, and (Z)-anethole as novel candidates. Subnetwork mapping linked these compounds to phosphorylation, GPCR-cAMP/TSH signaling, and transcriptional control. This framework recapitulates known thyroid-modulating herbs and elevates underappreciated leads with testable mechanisms, supporting the discovery of multi-target therapeutics for hyperthyroidism.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).