{"title":"Discovery of Galloyl-Flavonoid Conjugates as SARS-CoV-2 3CL<sup>pro</sup> Inhibitors: Understanding Binding Interactions Through Computational Approaches.","authors":"Nopawit Khamto, Panida Boontawee, Vachira Choommongkol, Kritsada Pruksaphon, Suwicha Patnin, Nuttee Suree, Panchika Prangkio, Puttinan Meepowpan","doi":"10.3390/ijms26199742","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of SARS-CoV-2 in 2019 posed significant global public health challenges. One of the most promising targets for novel antiviral drug development is the SARS-CoV-2 main protease (3CL<sup>pro</sup>). In this study, fragment molecular orbital (FMO) calculations were conducted to provide guidance for the structural modification of natural flavonoids, identifying the pyrogallol moiety as a key candidate. Natural flavonoids were chemically modified to generate 33 semi-synthetic derivatives through the introduction of various functional groups. Our findings revealed that the incorporation of a galloyl moiety significantly enhances anti-proteolytic activity against SARS-CoV-2 3CL<sup>pro</sup>, achieving up to a 23-fold increase compared to the activity of the parent compounds. Notably, 7-<i>O</i>-galloyl-DMC (<b>40</b>) exhibited the highest anti-proteolytic activity in an enzymatic assay. Additionally, molecular dynamics simulations provided atomic-level insights into the interactions between the galloyl moiety and 3CL<sup>pro</sup>. All galloylated flavonoid derivatives positioned their galloyl groups within the S1' sub-pocket, facilitating hydrogen bonding and π-interactions, particularly with Thr26 and Leu27. These findings underscore the potential of the galloyl moiety as a crucial structural element for enhancing the binding affinity of flavonoids with inhibitory activity against SARS-CoV-2 3CL<sup>pro</sup>.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199742","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of SARS-CoV-2 in 2019 posed significant global public health challenges. One of the most promising targets for novel antiviral drug development is the SARS-CoV-2 main protease (3CLpro). In this study, fragment molecular orbital (FMO) calculations were conducted to provide guidance for the structural modification of natural flavonoids, identifying the pyrogallol moiety as a key candidate. Natural flavonoids were chemically modified to generate 33 semi-synthetic derivatives through the introduction of various functional groups. Our findings revealed that the incorporation of a galloyl moiety significantly enhances anti-proteolytic activity against SARS-CoV-2 3CLpro, achieving up to a 23-fold increase compared to the activity of the parent compounds. Notably, 7-O-galloyl-DMC (40) exhibited the highest anti-proteolytic activity in an enzymatic assay. Additionally, molecular dynamics simulations provided atomic-level insights into the interactions between the galloyl moiety and 3CLpro. All galloylated flavonoid derivatives positioned their galloyl groups within the S1' sub-pocket, facilitating hydrogen bonding and π-interactions, particularly with Thr26 and Leu27. These findings underscore the potential of the galloyl moiety as a crucial structural element for enhancing the binding affinity of flavonoids with inhibitory activity against SARS-CoV-2 3CLpro.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).