{"title":"Diverse Members of the Phylum <i>Armatimonadota</i> Promote the Growth of Aquatic Plants, Duckweeds.","authors":"Tomoki Iwashita, Ayaka Makino, Ryosuke Nakai, Yasuko Yoneda, Yoichi Kamagata, Tadashi Toyama, Kazuhiro Mori, Yasuhiro Tanaka, Hideyuki Tamaki","doi":"10.3390/ijms26199824","DOIUrl":null,"url":null,"abstract":"<p><p>Duckweeds are small, fast-growing aquatic plants with high starch and protein content, making them promising candidates for next-generation plant biomass resources. Despite their importance, little is known about their interactions with microorganisms, particularly plant growth-promoting bacteria (PGPB), which play key roles in enhancing plant productivity. In this study, we report the plant growth-promoting effects of strain LA-C6, a member of the phylum <i>Armatimonadota</i>, isolated from duckweed fronds. Based on 16S rRNA gene analysis, this strain represents a novel genus-level lineage, and is referred to as <i>Fimbriimonadaceae</i> bacterium strain LA-C6. In axenic co-culture experiments, strain LA-C6 promoted duckweed growth, increasing the frond proliferation of four duckweed species (<i>Lemna minor</i>, <i>Lemna aequinoctialis</i>, <i>Spirodela polyrhiza</i>, and <i>Landoltia punctata</i>) by 1.8- to 4.0-fold compared with uninoculated controls. Importantly, three other phylogenetically distinct <i>Armatimonadota</i> species also exhibited significant plant growth-promoting effects on <i>L. minor</i>, increasing frond number by up to 2.3-fold and dry weight by up to 2.4-fold. This finding highlights the broader potential of diverse <i>Armatimonadota</i> members as PGP bacteria. A survey of the IMNGS database showed that strain LA-C6 and other <i>Armatimonadota</i> species are widely distributed across diverse plant-associated environments. Biochemical assays and gene prediction analyses revealed that strain LA-C6 produces indole-3-acetic acid (IAA) as a representative PGP trait, whereas no additional PGP-associated traits were detected. These results suggest that diverse bacterial lineages within the phylum <i>Armatimonadota</i> exert growth-promoting effects on aquatic plants, potentially through yet-to-be-identified mechanisms.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524902/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199824","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Duckweeds are small, fast-growing aquatic plants with high starch and protein content, making them promising candidates for next-generation plant biomass resources. Despite their importance, little is known about their interactions with microorganisms, particularly plant growth-promoting bacteria (PGPB), which play key roles in enhancing plant productivity. In this study, we report the plant growth-promoting effects of strain LA-C6, a member of the phylum Armatimonadota, isolated from duckweed fronds. Based on 16S rRNA gene analysis, this strain represents a novel genus-level lineage, and is referred to as Fimbriimonadaceae bacterium strain LA-C6. In axenic co-culture experiments, strain LA-C6 promoted duckweed growth, increasing the frond proliferation of four duckweed species (Lemna minor, Lemna aequinoctialis, Spirodela polyrhiza, and Landoltia punctata) by 1.8- to 4.0-fold compared with uninoculated controls. Importantly, three other phylogenetically distinct Armatimonadota species also exhibited significant plant growth-promoting effects on L. minor, increasing frond number by up to 2.3-fold and dry weight by up to 2.4-fold. This finding highlights the broader potential of diverse Armatimonadota members as PGP bacteria. A survey of the IMNGS database showed that strain LA-C6 and other Armatimonadota species are widely distributed across diverse plant-associated environments. Biochemical assays and gene prediction analyses revealed that strain LA-C6 produces indole-3-acetic acid (IAA) as a representative PGP trait, whereas no additional PGP-associated traits were detected. These results suggest that diverse bacterial lineages within the phylum Armatimonadota exert growth-promoting effects on aquatic plants, potentially through yet-to-be-identified mechanisms.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).