Alba Antúnez-Rodríguez, Sonia García-Rodríguez, Ana Pozo-Agundo, Jesús Gabriel Sánchez-Ramos, Eduardo Moreno-Escobar, José Matías Triviño-Juárez, María Jesús Álvarez-Cubero, Luis Javier Martínez-González, Cristina Lucía Dávila-Fajardo
{"title":"Custom Gene Panel Analysis Identifies Novel Polymorphisms Associated with Clopidogrel Response in Patients Undergoing Percutaneous Coronary Intervention with Stent.","authors":"Alba Antúnez-Rodríguez, Sonia García-Rodríguez, Ana Pozo-Agundo, Jesús Gabriel Sánchez-Ramos, Eduardo Moreno-Escobar, José Matías Triviño-Juárez, María Jesús Álvarez-Cubero, Luis Javier Martínez-González, Cristina Lucía Dávila-Fajardo","doi":"10.3390/ijms26199766","DOIUrl":null,"url":null,"abstract":"<p><p>Clopidogrel is widely used as an antiplatelet therapy for acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI). Genetic factors influence variability in clopidogrel response, with non-functional <i>CYP2C19</i> alleles increasing the risk of major adverse cardiovascular events (MACEs). While <i>CYP2C19</i> genotype-guided therapy after PCI improves outcomes, MACEs persist at variable rates. Pharmacogenomics (PGx) has primarily focused on genes related to drug metabolism, but therapeutic failure may stem from individual disease predisposition. This study aims to identify novel genetic variants underlying adverse events after PCI despite PGx-guided therapy. A custom sequencing panel was analyzed in 244 ACS-PCI-stent patients and 99 controls without cardiovascular (CV) disease. Association analysis was performed independent of treatment and by prescribed treatment (clopidogrel or prasugrel), complemented by random forest models to predict risk during antiplatelet therapy. No polymorphism reached genomic significance, but in clopidogrel-treated patients, rs2472434 in <i>ABCA1</i>, related to altered lipid metabolism, was strongly associated with secondary CV events (<i>p</i> = 1.7 × 10<sup>-3</sup>). Variants in the clopidogrel pathway, including <i>CYP2C19</i>, <i>ABCB1</i>, and <i>UGT2B7</i>, were also identified and may influence clopidogrel response. Predictive models incorporating these variants effectively discriminated patients with and without events (<i>p</i> = 0.02445). Our findings support combined genotyping of <i>CYP2C19</i> loss-of-function and <i>ABCB1 C3435T</i> variants to guide antiplatelet therapy and suggest additional targets, such as rs2472434 (<i>ABCA1</i>) and rs7439366 (<i>UGT2B7</i>), to improve risk prediction of adverse CV events. Therefore, the unexplained variability in clopidogrel response may be due to disease pathogenesis itself, highlighting the need for a paradigm shift in PGx studies.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199766","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clopidogrel is widely used as an antiplatelet therapy for acute coronary syndrome (ACS) patients undergoing percutaneous coronary intervention (PCI). Genetic factors influence variability in clopidogrel response, with non-functional CYP2C19 alleles increasing the risk of major adverse cardiovascular events (MACEs). While CYP2C19 genotype-guided therapy after PCI improves outcomes, MACEs persist at variable rates. Pharmacogenomics (PGx) has primarily focused on genes related to drug metabolism, but therapeutic failure may stem from individual disease predisposition. This study aims to identify novel genetic variants underlying adverse events after PCI despite PGx-guided therapy. A custom sequencing panel was analyzed in 244 ACS-PCI-stent patients and 99 controls without cardiovascular (CV) disease. Association analysis was performed independent of treatment and by prescribed treatment (clopidogrel or prasugrel), complemented by random forest models to predict risk during antiplatelet therapy. No polymorphism reached genomic significance, but in clopidogrel-treated patients, rs2472434 in ABCA1, related to altered lipid metabolism, was strongly associated with secondary CV events (p = 1.7 × 10-3). Variants in the clopidogrel pathway, including CYP2C19, ABCB1, and UGT2B7, were also identified and may influence clopidogrel response. Predictive models incorporating these variants effectively discriminated patients with and without events (p = 0.02445). Our findings support combined genotyping of CYP2C19 loss-of-function and ABCB1 C3435T variants to guide antiplatelet therapy and suggest additional targets, such as rs2472434 (ABCA1) and rs7439366 (UGT2B7), to improve risk prediction of adverse CV events. Therefore, the unexplained variability in clopidogrel response may be due to disease pathogenesis itself, highlighting the need for a paradigm shift in PGx studies.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).