{"title":"Combinatorial ERK Inhibition Enhances MAPK Pathway Suppression in BRAF-Mutant Melanoma.","authors":"Corinna Kosnopfel, Tobias Sinnberg, Shrunal Mane, Michelle Dongo, Claus Garbe, Heike Niessner","doi":"10.3390/ijms26199794","DOIUrl":null,"url":null,"abstract":"<p><p>Small molecule inhibitors targeting BRAF mutations at V600 and downstream MEK represent a significant advancement in treating BRAF-mutant melanoma. However, resistance mechanisms, often involving reactivation of the MAPK pathway via ERK1/2, limit their efficacy. The ERK1/2 inhibitor ravoxertinib (GDC0994) was tested on melanoma cell lines with and without resistance to BRAFi or BRAFi + MEKi. Short-term assays evaluated cell viability, apoptosis induction, and pathway modulation via Western Blot, while long-term effects were assessed using a colony formation assay. Resistant and parental melanoma cells responded to long-term ERKi treatment with reduced growth, independent of sensitivity to BRAF or MEK inhibitors. Adding ERKi to BRAFi/MEKi significantly enhanced apoptosis and growth inhibition, particularly in resistant lines. Although ravoxertinib alone showed limited antitumor activity, its combination with BRAFi/MEKi yielded substantial benefits, especially in chronic settings. These findings suggest that combinatorial regimens incorporating ERK inhibitors represent a promising therapeutic strategy for BRAF-mutant melanoma.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 19","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524744/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26199794","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Small molecule inhibitors targeting BRAF mutations at V600 and downstream MEK represent a significant advancement in treating BRAF-mutant melanoma. However, resistance mechanisms, often involving reactivation of the MAPK pathway via ERK1/2, limit their efficacy. The ERK1/2 inhibitor ravoxertinib (GDC0994) was tested on melanoma cell lines with and without resistance to BRAFi or BRAFi + MEKi. Short-term assays evaluated cell viability, apoptosis induction, and pathway modulation via Western Blot, while long-term effects were assessed using a colony formation assay. Resistant and parental melanoma cells responded to long-term ERKi treatment with reduced growth, independent of sensitivity to BRAF or MEK inhibitors. Adding ERKi to BRAFi/MEKi significantly enhanced apoptosis and growth inhibition, particularly in resistant lines. Although ravoxertinib alone showed limited antitumor activity, its combination with BRAFi/MEKi yielded substantial benefits, especially in chronic settings. These findings suggest that combinatorial regimens incorporating ERK inhibitors represent a promising therapeutic strategy for BRAF-mutant melanoma.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).