Huda Alghoraibi, Nuha Alqurashi, Sarah Alotaibi, Renad Alkhudaydi, Bdoor Aldajani, Joud Batawil, Lubna Alqurashi, Azza Althagafi, Maha A Thafar
{"title":"Deep Learning-Based Mpox Skin Lesion Detection and Real-Time Monitoring in a Smart Healthcare System.","authors":"Huda Alghoraibi, Nuha Alqurashi, Sarah Alotaibi, Renad Alkhudaydi, Bdoor Aldajani, Joud Batawil, Lubna Alqurashi, Azza Althagafi, Maha A Thafar","doi":"10.3390/diagnostics15192505","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Mpox, a viral disease marked by distinctive skin lesions, has emerged as a global health concern, underscoring the need for scalable, accessible, and accurate diagnostic tools to strengthen public health responses. This study introduces ITMA'INN, an AI-driven healthcare system designed to detect Mpox from skin lesion images using advanced deep learning. <b>Methods:</b> The system integrates three key components: an AI model pipeline, a cross-platform mobile application, and a real-time public health dashboard. We leveraged transfer learning on publicly available datasets to evaluate pretrained deep learning models. <b>Results</b>: For binary classification (Mpox vs. non-Mpox), Vision Transformer, MobileViT, Transformer-in-Transformer, and VGG16 achieved peak performance, each with 97.8% accuracy and F1-score. For multiclass classification (Mpox, chickenpox, measles, hand-foot-mouth disease, cowpox, and healthy skin), ResNetViT and ViT Hybrid models attained 92% accuracy (F1-scores: 92.24% and 92.19%, respectively). The lightweight MobileViT was deployed in a mobile app that enables users to analyze skin lesions, track symptoms, and locate nearby healthcare centers via GPS. Complementing this, the dashboard equips health authorities with real-time case monitoring, symptom trend analysis, and intervention guidance. <b>Conclusions</b>: By bridging AI diagnostics with mobile technology and real-time analytics, ITMA'INN advances responsive healthcare infrastructure in smart cities, contributing to the future of proactive public health management.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 19","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15192505","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Mpox, a viral disease marked by distinctive skin lesions, has emerged as a global health concern, underscoring the need for scalable, accessible, and accurate diagnostic tools to strengthen public health responses. This study introduces ITMA'INN, an AI-driven healthcare system designed to detect Mpox from skin lesion images using advanced deep learning. Methods: The system integrates three key components: an AI model pipeline, a cross-platform mobile application, and a real-time public health dashboard. We leveraged transfer learning on publicly available datasets to evaluate pretrained deep learning models. Results: For binary classification (Mpox vs. non-Mpox), Vision Transformer, MobileViT, Transformer-in-Transformer, and VGG16 achieved peak performance, each with 97.8% accuracy and F1-score. For multiclass classification (Mpox, chickenpox, measles, hand-foot-mouth disease, cowpox, and healthy skin), ResNetViT and ViT Hybrid models attained 92% accuracy (F1-scores: 92.24% and 92.19%, respectively). The lightweight MobileViT was deployed in a mobile app that enables users to analyze skin lesions, track symptoms, and locate nearby healthcare centers via GPS. Complementing this, the dashboard equips health authorities with real-time case monitoring, symptom trend analysis, and intervention guidance. Conclusions: By bridging AI diagnostics with mobile technology and real-time analytics, ITMA'INN advances responsive healthcare infrastructure in smart cities, contributing to the future of proactive public health management.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.