Fereshteh Yousefirizi, Ghasem Hajianfar, Maziar Sabouri, Caroline Holloway, Pete Tonseth, Abraham Alexander, Tahir I Yusufaly, Loren K Mell, Sara Harsini, François Bénard, Habib Zaidi, Carlos Uribe, Arman Rahmim
{"title":"Pre-Treatment PET Radiomics for Prediction of Disease-Free Survival in Cervical Cancer.","authors":"Fereshteh Yousefirizi, Ghasem Hajianfar, Maziar Sabouri, Caroline Holloway, Pete Tonseth, Abraham Alexander, Tahir I Yusufaly, Loren K Mell, Sara Harsini, François Bénard, Habib Zaidi, Carlos Uribe, Arman Rahmim","doi":"10.3390/cancers17193218","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Cervical cancer remains a major global health concern, with high recurrence rates in advanced stages. [<sup>18</sup>F]FDG PET/CT provides prognostic biomarkers such as SUV, MTV, and TLG, though these are not routinely integrated into clinical protocols. Radiomics offers quantitative analysis of tumor heterogeneity, supporting risk stratification. <b>Purpose:</b> To evaluate the prognostic value of clinical and radiomic features for disease-free survival (DFS) in locoregionally advanced cervical cancer using machine learning (ML). <b>Methods:</b> Sixty-three patients (mean age 47.9 ± 14.5 years) were diagnosed between 2015 and 2020. Radiomic features were extracted from pre-treatment PET/CT (IBSI-compliant PyRadiomics). Clinical variables included age, T-stage, Dmax, lymph node involvement, SUVmax, and TMTV. Forty-two models were built by combining six feature-selection techniques (UCI, MD, MI, VH, VH.VIMP, IBMA) with seven ML algorithms (CoxPH, CB, GLMN, GLMB, RSF, ST, EV) using nested 3-fold cross-validation with bootstrap resampling. External validation was performed on 95 patients (mean age 50.6 years, FIGO IIB-IIIB) from an independent cohort with different preprocessing protocols. <b>Results:</b> Recurrence occurred in 31.7% (<i>n</i> = 20). SUVmax of lymph nodes, lymph node involvement, and TMTV were the most predictive individual features (C-index ≤ 0.77). The highest performance was achieved by UCI + EV/GLMB on combined clinical + radiomic features (C-index = 0.80, <i>p</i> < 0.05). For single feature sets, IBMA + RSF performed best for clinical (C-index = 0.72), and VH.VIMP + GLMN for radiomics (C-index = 0.71). External validation confirmed moderate generalizability (best C-index = 0.64). <b>Conclusions:</b> UCI-based feature selection with GLMB or EV yielded the best predictive accuracy, while VH.VIMP + GLMN offered superior external generalizability for radiomics-only models. These findings support the feasibility of integrating radiomics and ML for individualized DFS risk stratification in cervical cancer.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 19","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17193218","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cervical cancer remains a major global health concern, with high recurrence rates in advanced stages. [18F]FDG PET/CT provides prognostic biomarkers such as SUV, MTV, and TLG, though these are not routinely integrated into clinical protocols. Radiomics offers quantitative analysis of tumor heterogeneity, supporting risk stratification. Purpose: To evaluate the prognostic value of clinical and radiomic features for disease-free survival (DFS) in locoregionally advanced cervical cancer using machine learning (ML). Methods: Sixty-three patients (mean age 47.9 ± 14.5 years) were diagnosed between 2015 and 2020. Radiomic features were extracted from pre-treatment PET/CT (IBSI-compliant PyRadiomics). Clinical variables included age, T-stage, Dmax, lymph node involvement, SUVmax, and TMTV. Forty-two models were built by combining six feature-selection techniques (UCI, MD, MI, VH, VH.VIMP, IBMA) with seven ML algorithms (CoxPH, CB, GLMN, GLMB, RSF, ST, EV) using nested 3-fold cross-validation with bootstrap resampling. External validation was performed on 95 patients (mean age 50.6 years, FIGO IIB-IIIB) from an independent cohort with different preprocessing protocols. Results: Recurrence occurred in 31.7% (n = 20). SUVmax of lymph nodes, lymph node involvement, and TMTV were the most predictive individual features (C-index ≤ 0.77). The highest performance was achieved by UCI + EV/GLMB on combined clinical + radiomic features (C-index = 0.80, p < 0.05). For single feature sets, IBMA + RSF performed best for clinical (C-index = 0.72), and VH.VIMP + GLMN for radiomics (C-index = 0.71). External validation confirmed moderate generalizability (best C-index = 0.64). Conclusions: UCI-based feature selection with GLMB or EV yielded the best predictive accuracy, while VH.VIMP + GLMN offered superior external generalizability for radiomics-only models. These findings support the feasibility of integrating radiomics and ML for individualized DFS risk stratification in cervical cancer.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.