Quantitative Assessment of Biological Dynamics with Aggregate Data.

IF 2.2 4区 数学 Q2 BIOLOGY
Stephen McCoy, Daniel McBride, D Katie McCullough, Benjamin C Calfee, Erik Zinser, David Talmy, Ioannis Sgouralis
{"title":"Quantitative Assessment of Biological Dynamics with Aggregate Data.","authors":"Stephen McCoy, Daniel McBride, D Katie McCullough, Benjamin C Calfee, Erik Zinser, David Talmy, Ioannis Sgouralis","doi":"10.1007/s11538-025-01534-x","DOIUrl":null,"url":null,"abstract":"<p><p>We develop and apply a learning framework for parameter estimation in initial value problems that are assessed only indirectly via aggregate data such as sample means and/or standard deviations. Our comprehensive framework follows Bayesian principles and consists of specialized Markov chain Monte Carlo computational schemes that rely on modified Hamiltonian Monte Carlo to align with constraints induced by summary statistics and a novel elliptical slice sampler adapted to the parameters of biological models. We benchmark our methods with synthetic data on microbial growth in batch culture and test them with real growth curve data from laboratory replication experiments on Prochlorococcus microbes. The results indicate that our learning framework can utilize experimental or historical data and lead to robust parameter estimation and data assimilation in ODE models that outperform least-squares fitting.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 11","pages":"164"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12528303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01534-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop and apply a learning framework for parameter estimation in initial value problems that are assessed only indirectly via aggregate data such as sample means and/or standard deviations. Our comprehensive framework follows Bayesian principles and consists of specialized Markov chain Monte Carlo computational schemes that rely on modified Hamiltonian Monte Carlo to align with constraints induced by summary statistics and a novel elliptical slice sampler adapted to the parameters of biological models. We benchmark our methods with synthetic data on microbial growth in batch culture and test them with real growth curve data from laboratory replication experiments on Prochlorococcus microbes. The results indicate that our learning framework can utilize experimental or historical data and lead to robust parameter estimation and data assimilation in ODE models that outperform least-squares fitting.

Abstract Image

Abstract Image

Abstract Image

基于聚合数据的生物动力学定量评估。
我们开发并应用了一个学习框架,用于初始值问题的参数估计,这些问题只能通过样本均值和/或标准差等汇总数据间接评估。我们的综合框架遵循贝叶斯原理,由专门的马尔可夫链蒙特卡罗计算方案组成,该计算方案依赖于改进的哈密顿蒙特卡罗,以适应汇总统计和适应生物模型参数的新型椭圆切片采样器。我们以批培养中微生物生长的合成数据为基准,并以原绿球藻微生物的实验室复制实验的真实生长曲线数据进行测试。结果表明,我们的学习框架可以利用实验或历史数据,并在ODE模型中实现鲁棒参数估计和数据同化,其性能优于最小二乘拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信