BayesianFitForecast: a user-friendly R toolbox for parameter estimation and forecasting with ordinary differential equations.

IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS
Hamed Karami, Amanda Bleichrodt, Ruiyan Luo, Gerardo Chowell
{"title":"BayesianFitForecast: a user-friendly R toolbox for parameter estimation and forecasting with ordinary differential equations.","authors":"Hamed Karami, Amanda Bleichrodt, Ruiyan Luo, Gerardo Chowell","doi":"10.1186/s12911-025-03208-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mathematical models based on ordinary differential equations (ODEs) are essential tools across various scientific disciplines, including biology, ecology, epidemic modeling, and healthcare informatics, where they are used to simulate complex dynamic systems and inform decision-making. However, implementing Bayesian calibration and forecasting typically requires substantial coding in Stan or similar tools. To support Bayesian parameter estimation and forecasting for such systems, we introduce BayesianFitForecast, a user-friendly R toolbox specifically developed to streamline Bayesian parameter estimation and forecasting in ODE models, making it particularly relevant to health informatics and public health decision-making ( https://github.com/gchowell/BayesianFitForecast/ ).</p><p><strong>Results: </strong>This toolbox enables automatic generation of Stan files, allowing users to configure models, define priors, and analyze results with minimal programming expertise. By eliminating manual coding, BayesianFitForecast significantly lowers the technical barrier to Bayesian inference with dynamical systems. We demonstrate its flexibility and usability through applications to historical epidemic datasets (e.g., the 1918 influenza pandemic in San Francisco and the 1896-1897 Bombay plague) and simulated data, showing robust parameter estimation and forecasting performance under Poisson and negative binomial observation error structures. The toolbox also provides robust tools for evaluating model performance, including convergence diagnostics, posterior distributions, credible intervals, and performance metrics.</p><p><strong>Conclusion: </strong>By improving the accessibility of advanced Bayesian methods, BayesianFitForecast broadens the application of Bayesian inference in time-series modeling, healthcare forecasting, and epidemiological applications. In addition to the R scripting interface, a built-in Shiny web application is included, enabling interactive model configuration, visualization, and forecasting. A tutorial video demonstrating the toolbox's functionality is also available ( https://youtu.be/jnxMjz3V3n8 ).</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"385"},"PeriodicalIF":3.8000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-03208-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mathematical models based on ordinary differential equations (ODEs) are essential tools across various scientific disciplines, including biology, ecology, epidemic modeling, and healthcare informatics, where they are used to simulate complex dynamic systems and inform decision-making. However, implementing Bayesian calibration and forecasting typically requires substantial coding in Stan or similar tools. To support Bayesian parameter estimation and forecasting for such systems, we introduce BayesianFitForecast, a user-friendly R toolbox specifically developed to streamline Bayesian parameter estimation and forecasting in ODE models, making it particularly relevant to health informatics and public health decision-making ( https://github.com/gchowell/BayesianFitForecast/ ).

Results: This toolbox enables automatic generation of Stan files, allowing users to configure models, define priors, and analyze results with minimal programming expertise. By eliminating manual coding, BayesianFitForecast significantly lowers the technical barrier to Bayesian inference with dynamical systems. We demonstrate its flexibility and usability through applications to historical epidemic datasets (e.g., the 1918 influenza pandemic in San Francisco and the 1896-1897 Bombay plague) and simulated data, showing robust parameter estimation and forecasting performance under Poisson and negative binomial observation error structures. The toolbox also provides robust tools for evaluating model performance, including convergence diagnostics, posterior distributions, credible intervals, and performance metrics.

Conclusion: By improving the accessibility of advanced Bayesian methods, BayesianFitForecast broadens the application of Bayesian inference in time-series modeling, healthcare forecasting, and epidemiological applications. In addition to the R scripting interface, a built-in Shiny web application is included, enabling interactive model configuration, visualization, and forecasting. A tutorial video demonstrating the toolbox's functionality is also available ( https://youtu.be/jnxMjz3V3n8 ).

贝叶斯fitforecast:一个用户友好的R工具箱,用于参数估计和预测与常微分方程。
背景:基于常微分方程(ode)的数学模型是跨越各种科学学科的重要工具,包括生物学、生态学、流行病建模和医疗信息学,它们用于模拟复杂的动态系统并为决策提供信息。然而,实现贝叶斯校准和预测通常需要在Stan或类似工具中进行大量编码。为了支持这些系统的贝叶斯参数估计和预测,我们引入了BayesianFitForecast,这是一个用户友好的R工具箱,专门用于简化ODE模型中的贝叶斯参数估计和预测,使其与卫生信息学和公共卫生决策特别相关(https://github.com/gchowell/BayesianFitForecast/)。结果:这个工具箱支持Stan文件的自动生成,允许用户配置模型,定义先验,并以最少的编程专业知识分析结果。通过消除人工编码,BayesianFitForecast显著降低了动态系统贝叶斯推理的技术障碍。我们通过对历史流行病数据集(例如,1918年旧金山流感大流行和1896-1897年孟买瘟疫)和模拟数据的应用证明了它的灵活性和可用性,在泊松和负二项观测误差结构下显示了稳健的参数估计和预测性能。工具箱还提供了用于评估模型性能的强大工具,包括收敛诊断、后验分布、可信区间和性能度量。结论:通过提高高级贝叶斯方法的可及性,BayesianFitForecast拓宽了贝叶斯推理在时间序列建模、医疗预测和流行病学应用中的应用。除了R脚本界面之外,它还包含一个内置的Shiny web应用程序,支持交互式模型配置、可视化和预测。还可以获得演示工具箱功能的教程视频(https://youtu.be/jnxMjz3V3n8)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信