José Marcelo Soriano Viana, Jean Paulo Aparecido da Silva, Paulo Sávio Lopes
{"title":"Efficiency of Recurrent Genomic Selection in Panmictic Populations.","authors":"José Marcelo Soriano Viana, Jean Paulo Aparecido da Silva, Paulo Sávio Lopes","doi":"10.3390/ani15192925","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation-based studies can support breeders' decisions inexpensively, since there is no need to perform a new procedure. The objective was to assess the efficiency of recurrent genomic selection in panmictic population under additive-dominance and additive-dominance with epistasis models. We assumed two broiler chicken populations with contrasting linkage disequilibrium (LD) levels, 38,500 SNPs, and 1000 genes controlling feed conversion ratio. We applied recurrent genomic selection over seven cycles. The genomic selection efficacy, expressed as realized total genetic gain, was proportional to the LD level and genotypic variance. Genomic selection required model updating to achieve a higher efficacy. The training set size required by genomic selection can be as low as 10%/generation. Under this low-cost scenario, the genomic selection efficacy was slightly lower than the maximum efficacy. There is no difference between genetic evaluation methods regarding the decrease in the genotypic variance due to selection. In general, additive value prediction accuracies and realized genetic gains were highly correlated. The accumulated inbreeding level was not high due to avoidance of sib cross. The genomic inbreeding coefficient over generations was close to zero. Except for dominant epistasis, the efficacy of genomic selection was 4.1 to 46.2% lower than the efficacy under no epistasis.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 19","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12523783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15192925","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Simulation-based studies can support breeders' decisions inexpensively, since there is no need to perform a new procedure. The objective was to assess the efficiency of recurrent genomic selection in panmictic population under additive-dominance and additive-dominance with epistasis models. We assumed two broiler chicken populations with contrasting linkage disequilibrium (LD) levels, 38,500 SNPs, and 1000 genes controlling feed conversion ratio. We applied recurrent genomic selection over seven cycles. The genomic selection efficacy, expressed as realized total genetic gain, was proportional to the LD level and genotypic variance. Genomic selection required model updating to achieve a higher efficacy. The training set size required by genomic selection can be as low as 10%/generation. Under this low-cost scenario, the genomic selection efficacy was slightly lower than the maximum efficacy. There is no difference between genetic evaluation methods regarding the decrease in the genotypic variance due to selection. In general, additive value prediction accuracies and realized genetic gains were highly correlated. The accumulated inbreeding level was not high due to avoidance of sib cross. The genomic inbreeding coefficient over generations was close to zero. Except for dominant epistasis, the efficacy of genomic selection was 4.1 to 46.2% lower than the efficacy under no epistasis.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).