{"title":"SATSN: A Spatial-Adaptive Two-Stream Network for Automatic Detection of Giraffe Daily Behaviors.","authors":"Haiming Gan, Xiongwei Wu, Jianlu Chen, Jingling Wang, Yuxin Fang, Yuqing Xue, Tian Jiang, Huanzhen Chen, Peng Zhang, Guixin Dong, Yueju Xue","doi":"10.3390/ani15192833","DOIUrl":null,"url":null,"abstract":"<p><p>The daily behavioral patterns of giraffes reflect their health status and well-being. Behaviors such as licking, walking, standing, and eating are not only essential components of giraffes' routine activities but also serve as potential indicators of their mental and physiological conditions. This is particularly relevant in captive environments such as zoos, where certain repetitive behaviors may signal underlying well-being concerns. Therefore, developing an efficient and accurate automated behavior detection system is of great importance for scientific management and welfare improvement. This study proposes a multi-behavior automatic detection method for giraffes based on YOLO11-Pose and the spatial-adaptive two-stream network (SATSN). Firstly, YOLO11-Pose is employed to detect giraffes and estimate the keypoints of their mouths. Observation-Centric SORT (OC-SORT) is then used to track individual giraffes across frames, ensuring temporal identity consistency based on the keypoint positions estimated by YOLO11-Pose. In the SATSN, we propose a region-of-interest extraction strategy for licking behavior to extract local motion features and perform daily behavior classification. In this network, the original 3D ResNet backbone in the slow pathway is replaced with a video transformer encoder to enhance global spatiotemporal modeling, while a Temporal Attention (TA) module is embedded in the fast pathway to improve the representation of fast motion features. To validate the effectiveness of the proposed method, a giraffe behavior dataset consisting of 420 video clips (10 s per clip) was constructed, with 336 clips used for training and 84 for validation. Experimental results show that for the detection tasks of licking, walking, standing, and eating behaviors, the proposed method achieves a mean average precision (mAP) of 93.99%. This demonstrates the strong detection performance and generalization capability of the approach, providing robust support for automated multi-behavior detection and well-being assessment of giraffes. It also lays a technical foundation for building intelligent behavioral monitoring systems in zoos.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 19","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12524285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15192833","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The daily behavioral patterns of giraffes reflect their health status and well-being. Behaviors such as licking, walking, standing, and eating are not only essential components of giraffes' routine activities but also serve as potential indicators of their mental and physiological conditions. This is particularly relevant in captive environments such as zoos, where certain repetitive behaviors may signal underlying well-being concerns. Therefore, developing an efficient and accurate automated behavior detection system is of great importance for scientific management and welfare improvement. This study proposes a multi-behavior automatic detection method for giraffes based on YOLO11-Pose and the spatial-adaptive two-stream network (SATSN). Firstly, YOLO11-Pose is employed to detect giraffes and estimate the keypoints of their mouths. Observation-Centric SORT (OC-SORT) is then used to track individual giraffes across frames, ensuring temporal identity consistency based on the keypoint positions estimated by YOLO11-Pose. In the SATSN, we propose a region-of-interest extraction strategy for licking behavior to extract local motion features and perform daily behavior classification. In this network, the original 3D ResNet backbone in the slow pathway is replaced with a video transformer encoder to enhance global spatiotemporal modeling, while a Temporal Attention (TA) module is embedded in the fast pathway to improve the representation of fast motion features. To validate the effectiveness of the proposed method, a giraffe behavior dataset consisting of 420 video clips (10 s per clip) was constructed, with 336 clips used for training and 84 for validation. Experimental results show that for the detection tasks of licking, walking, standing, and eating behaviors, the proposed method achieves a mean average precision (mAP) of 93.99%. This demonstrates the strong detection performance and generalization capability of the approach, providing robust support for automated multi-behavior detection and well-being assessment of giraffes. It also lays a technical foundation for building intelligent behavioral monitoring systems in zoos.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).