Ultrasonic vibration-assisted arc machining of Inconel 718: Achieving concurrent processing efficiency enhancement and microstructure regulation

IF 9.7 1区 化学 Q1 ACOUSTICS
Shengwei Ding , Jianping Zhou , Hui Yu , Bingbing Wang , Yizhou Zhang , Yu Ren , Yinan Zhao , Xujun Guo , Tianyu Sun , Jiangtao Hu , Yan Xu
{"title":"Ultrasonic vibration-assisted arc machining of Inconel 718: Achieving concurrent processing efficiency enhancement and microstructure regulation","authors":"Shengwei Ding ,&nbsp;Jianping Zhou ,&nbsp;Hui Yu ,&nbsp;Bingbing Wang ,&nbsp;Yizhou Zhang ,&nbsp;Yu Ren ,&nbsp;Yinan Zhao ,&nbsp;Xujun Guo ,&nbsp;Tianyu Sun ,&nbsp;Jiangtao Hu ,&nbsp;Yan Xu","doi":"10.1016/j.ultsonch.2025.107600","DOIUrl":null,"url":null,"abstract":"<div><div>The arc discharge machining technology achieves efficient material erosion through high-energy discharge, but its intense thermal coupling leads to instability in phase transition control, resulting in an essential conflict between processing efficiency and surface integrity. This fundamental scientific issue hinders the high-integrity manufacturing of advanced materials under extreme conditions. The intermittent contact of ultrasonic vibration-assisted machining technology explains its advantages in processing performance. Based on this, this paper proposes a new paradigm of ultrasonic-arc composite machining (UEAM), which achieves the coordinated regulation of the energy-precision paradox through dynamic modulation of multi-physical fields. Firstly, the full-cycle dynamic evolution of the plasma channel in UEAM and conventional electrical arc machining (EAM) is captured through pulse discharge tests combined with in-situ high-speed photography. On this basis, the processing performance of UEAM is verified through continuous milling discharge tests. The research shows: The ultrasonic vibration induces spatial–temporal reconstruction of the plasma, shortening the breakdown delay by 84.6 % (from 812.5 μs to 125 μs), while increasing the discharge frequency by 150 % (from 16 peaks/s to 40 peaks/s); The 20 kHz lateral vibration excites cavitation microjet and melt pool micro-turbulence, synergistically reducing the C/O enrichment of the recast layer by 31.36 %/70.73 % (to 18.65 %/3.52 %), and restoring the Ni content to 40.89 %; XRD phase analysis confirms that ultrasonic vibration significantly inhibits the formation of brittle phases such as Cr<sub>2</sub>O<sub>3</sub> and NiFe<sub>2</sub>O<sub>4</sub>, reducing the recast layer thickness by 74.8 % (from 103 μm to 26 μm). This technology achieves the coordinated enhancement of element distribution homogeneity and surface integrity through a three-level synergistic mechanism of “plasma dispersion-melt pool mass transfer-solidification control” providing a general solution for high-precision and low-damage machining of high-temperature alloys.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"122 ","pages":"Article 107600"},"PeriodicalIF":9.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725003797","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The arc discharge machining technology achieves efficient material erosion through high-energy discharge, but its intense thermal coupling leads to instability in phase transition control, resulting in an essential conflict between processing efficiency and surface integrity. This fundamental scientific issue hinders the high-integrity manufacturing of advanced materials under extreme conditions. The intermittent contact of ultrasonic vibration-assisted machining technology explains its advantages in processing performance. Based on this, this paper proposes a new paradigm of ultrasonic-arc composite machining (UEAM), which achieves the coordinated regulation of the energy-precision paradox through dynamic modulation of multi-physical fields. Firstly, the full-cycle dynamic evolution of the plasma channel in UEAM and conventional electrical arc machining (EAM) is captured through pulse discharge tests combined with in-situ high-speed photography. On this basis, the processing performance of UEAM is verified through continuous milling discharge tests. The research shows: The ultrasonic vibration induces spatial–temporal reconstruction of the plasma, shortening the breakdown delay by 84.6 % (from 812.5 μs to 125 μs), while increasing the discharge frequency by 150 % (from 16 peaks/s to 40 peaks/s); The 20 kHz lateral vibration excites cavitation microjet and melt pool micro-turbulence, synergistically reducing the C/O enrichment of the recast layer by 31.36 %/70.73 % (to 18.65 %/3.52 %), and restoring the Ni content to 40.89 %; XRD phase analysis confirms that ultrasonic vibration significantly inhibits the formation of brittle phases such as Cr2O3 and NiFe2O4, reducing the recast layer thickness by 74.8 % (from 103 μm to 26 μm). This technology achieves the coordinated enhancement of element distribution homogeneity and surface integrity through a three-level synergistic mechanism of “plasma dispersion-melt pool mass transfer-solidification control” providing a general solution for high-precision and low-damage machining of high-temperature alloys.
超声振动辅助电弧加工Inconel 718:实现加工效率的提高和微观组织的调节。
电弧放电加工技术通过高能放电实现了材料的高效冲蚀,但其强烈的热耦合导致相变控制不稳定,造成加工效率与表面完整性之间的本质冲突。这个基本的科学问题阻碍了在极端条件下制造高完整性的先进材料。超声振动辅助加工技术的间歇接触特性说明了其在加工性能上的优越性。在此基础上,提出了超声-电弧复合加工(UEAM)的新范式,通过多物理场的动态调制实现能量-精度悖论的协调调节。首先,通过脉冲放电试验结合现场高速摄影,捕捉了UEAM和常规电弧加工(EAM)中等离子体通道的全周期动态演变;在此基础上,通过连续铣削放电试验验证了UEAM的加工性能。研究表明:超声振动诱导等离子体的时空重构,击穿延迟缩短84.6 %(从812.5 μs缩短到125 μs),放电频率提高150 %(从16个峰/s提高到40个峰/s);20 kHz横向振动激发空化微射流和熔池微湍流,协同降低重铸层C/O富集31.36 %/70.73 %(至18.65 %/3.52 %),使Ni含量恢复到40.89 %;XRD相分析证实,超声振动显著抑制Cr2O3和NiFe2O4等脆性相的形成,使重铸层厚度减少74.8% %(从103 μm减少到26 μm)。该技术通过“等离子体分散-熔池传质-凝固控制”三级协同机制,实现了元素分布均匀性和表面完整性的协同增强,为高温合金高精度低损伤加工提供了通用解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信