Skin Adhesive 3D-Printable BSA-Amyloid/Cellulose Hybrid Hydrogel Film for Rapid Wound Healing and Skin Regeneration with Enhanced Antioxidant and Anti-Inflammatory Properties.
{"title":"Skin Adhesive 3D-Printable BSA-Amyloid/Cellulose Hybrid Hydrogel Film for Rapid Wound Healing and Skin Regeneration with Enhanced Antioxidant and Anti-Inflammatory Properties.","authors":"Saurabh Kumar Srivastava, Shikha Tripathi, Sakshi Agarwal, Rahul Ranjan, Somesh Agrawal, Prodyut Dhar, Eugene B Postnikov, Shilpi Chaudhary, Vinod Tiwari, Avanish Singh Parmar","doi":"10.1021/acsabm.5c01216","DOIUrl":null,"url":null,"abstract":"<p><p>Natural polymer-based hydrogels closely mimic the extracellular matrix, making them ideal for supporting cell growth and tissue regeneration. Recent advancements in tuning their porosity, morphology, and size have helped overcome key challenges in tissue engineering, such as vascularization and multicellular integration. However, their clinical use is often limited by drawbacks, such as low mechanical strength, structural instability, high production costs, and limited reproducibility. In this work, we present a skin-adhesive, 3D-printable/injectable hybrid hydrogel composed of natural protein and cellulose. This hybrid hydrogel overcomes the limitations of conventional systems by enhancing mechanical strength, scaffold stability, reproducibility, cost-effectiveness, and adhesive properties while preserving high biocompatibility and biodegradability. Using the same formulation, a wound dressing material is fabricated and applied at the wound site either by suturing or as an adhesive film. Furthermore, the hydrogel exhibits inherent antibacterial, antioxidant (60% of radical scavenging), anti-inflammatory, cell viability (up to 90%), and cell migration properties that significantly promote wound healing. This multifunctional hybrid hydrogel offers a promising solution for next-generation wound dressing applications and contributes to the advancement of bioactive and customizable materials in regenerative medicine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c01216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Natural polymer-based hydrogels closely mimic the extracellular matrix, making them ideal for supporting cell growth and tissue regeneration. Recent advancements in tuning their porosity, morphology, and size have helped overcome key challenges in tissue engineering, such as vascularization and multicellular integration. However, their clinical use is often limited by drawbacks, such as low mechanical strength, structural instability, high production costs, and limited reproducibility. In this work, we present a skin-adhesive, 3D-printable/injectable hybrid hydrogel composed of natural protein and cellulose. This hybrid hydrogel overcomes the limitations of conventional systems by enhancing mechanical strength, scaffold stability, reproducibility, cost-effectiveness, and adhesive properties while preserving high biocompatibility and biodegradability. Using the same formulation, a wound dressing material is fabricated and applied at the wound site either by suturing or as an adhesive film. Furthermore, the hydrogel exhibits inherent antibacterial, antioxidant (60% of radical scavenging), anti-inflammatory, cell viability (up to 90%), and cell migration properties that significantly promote wound healing. This multifunctional hybrid hydrogel offers a promising solution for next-generation wound dressing applications and contributes to the advancement of bioactive and customizable materials in regenerative medicine.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.