{"title":"Turbo-charging crop improvement: harnessing multiplex editing for polygenic trait engineering and beyond","authors":"Kangquan Yin, Chung-Jui Tsai","doi":"10.1111/tpj.70527","DOIUrl":null,"url":null,"abstract":"<p>Multiplex CRISPR editing has emerged as a transformative platform for plant genome engineering, enabling the simultaneous targeting of multiple genes, regulatory elements, or chromosomal regions. This approach is effective for dissecting gene family functions, addressing genetic redundancy, engineering polygenic traits, and accelerating trait stacking and <i>de novo</i> domestication. Its applications now extend beyond standard gene knockouts to include epigenetic and transcriptional regulation, chromosomal engineering, and transgene-free editing. These capabilities are advancing crop improvement not only in annual species but also in more complex systems such as polyploids, undomesticated wild relatives, and species with long generation times. At the same time, multiplex editing presents technical challenges, including complex construct design and the need for robust, scalable mutation detection. We discuss current toolkits and recent innovations in vector architecture, such as promoter and scaffold engineering, that streamline workflows and enhance editing efficiency. High-throughput sequencing technologies, including long-read platforms, are improving the resolution of complex editing outcomes such as structural rearrangements—often missed by standard genotyping—when targeting repetitive or tandemly spaced loci. To fully realize the potential of multiplex genome engineering, there is growing demand for user-friendly, synthetic biology-compatible, and scalable computational workflows for gRNA design, construct assembly, and mutation analysis. Experimentally validated inducible or tissue-specific promoters are also highly desirable for achieving spatiotemporal control. As these tools continue to evolve, multiplex CRISPR editing is poised to become a foundational technology of next-generation crop improvement to address challenges in agriculture, sustainability, and climate resilience.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"124 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12527382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70527","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplex CRISPR editing has emerged as a transformative platform for plant genome engineering, enabling the simultaneous targeting of multiple genes, regulatory elements, or chromosomal regions. This approach is effective for dissecting gene family functions, addressing genetic redundancy, engineering polygenic traits, and accelerating trait stacking and de novo domestication. Its applications now extend beyond standard gene knockouts to include epigenetic and transcriptional regulation, chromosomal engineering, and transgene-free editing. These capabilities are advancing crop improvement not only in annual species but also in more complex systems such as polyploids, undomesticated wild relatives, and species with long generation times. At the same time, multiplex editing presents technical challenges, including complex construct design and the need for robust, scalable mutation detection. We discuss current toolkits and recent innovations in vector architecture, such as promoter and scaffold engineering, that streamline workflows and enhance editing efficiency. High-throughput sequencing technologies, including long-read platforms, are improving the resolution of complex editing outcomes such as structural rearrangements—often missed by standard genotyping—when targeting repetitive or tandemly spaced loci. To fully realize the potential of multiplex genome engineering, there is growing demand for user-friendly, synthetic biology-compatible, and scalable computational workflows for gRNA design, construct assembly, and mutation analysis. Experimentally validated inducible or tissue-specific promoters are also highly desirable for achieving spatiotemporal control. As these tools continue to evolve, multiplex CRISPR editing is poised to become a foundational technology of next-generation crop improvement to address challenges in agriculture, sustainability, and climate resilience.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.