Efficient Integration of 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid with Electrochemical Reduction of CO2 to Tunable Syngas Production in a Flow Cell.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-16 DOI:10.1002/cssc.202502122
Moritz Lukas Krebs, Anil Kumar Sihag, Eko Budiyanto, Harun Tüysüz, Christian M Pichler, Ferdi Schüth
{"title":"Efficient Integration of 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid with Electrochemical Reduction of CO<sub>2</sub> to Tunable Syngas Production in a Flow Cell.","authors":"Moritz Lukas Krebs, Anil Kumar Sihag, Eko Budiyanto, Harun Tüysüz, Christian M Pichler, Ferdi Schüth","doi":"10.1002/cssc.202502122","DOIUrl":null,"url":null,"abstract":"<p><p>Pairing electrochemical CO<sub>2</sub> reduction (CO<sub>2</sub>RR) with the oxygen evolution reaction (OER) significantly limits overall system efficiency due to the high energy demand of the OER and low product value. Here, a scalable electrochemical platform is present that couples CO<sub>2</sub>RR with the oxidation of 5-hydroxymethylfurfural (HMF) to the high-value product 2,5-furandicarboxylic acid (FDCA). Using a bimetallic FeCo-modified Ni-anode, prepared via a Fenton-like surface treatment, achieves >95% FDCA yield and Faradaic efficiency under industrially relevant conditions by oxidizing stable Cannizzaro-derived intermediates. Integration with CO<sub>2</sub>RR in an electrochemical flow cell enables syngas production with tunable H<sub>2</sub>/CO ratios (0.1-4) and >92% overall Faradaic efficiency. Simultaneously, FDCA is produced at the anode with ≈89% Faradaic efficiency and yields exceeding 90%. Economic analysis indicates an 11-12% improvement in overall energy efficiency, with FDCA contributing more than 96% of the system revenue. This work establishes a scalable, energy-efficient platform for concurrent CO<sub>2</sub> utilization and biomass upgrading, advancing sustainable electrochemical production.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202502122"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202502122","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pairing electrochemical CO2 reduction (CO2RR) with the oxygen evolution reaction (OER) significantly limits overall system efficiency due to the high energy demand of the OER and low product value. Here, a scalable electrochemical platform is present that couples CO2RR with the oxidation of 5-hydroxymethylfurfural (HMF) to the high-value product 2,5-furandicarboxylic acid (FDCA). Using a bimetallic FeCo-modified Ni-anode, prepared via a Fenton-like surface treatment, achieves >95% FDCA yield and Faradaic efficiency under industrially relevant conditions by oxidizing stable Cannizzaro-derived intermediates. Integration with CO2RR in an electrochemical flow cell enables syngas production with tunable H2/CO ratios (0.1-4) and >92% overall Faradaic efficiency. Simultaneously, FDCA is produced at the anode with ≈89% Faradaic efficiency and yields exceeding 90%. Economic analysis indicates an 11-12% improvement in overall energy efficiency, with FDCA contributing more than 96% of the system revenue. This work establishes a scalable, energy-efficient platform for concurrent CO2 utilization and biomass upgrading, advancing sustainable electrochemical production.

5-羟甲基糠醛氧化为2,5-呋喃二羧酸的高效集成与电化学还原CO2在流动电池中的可调合成气生产。
将电化学CO2还原(CO2RR)与析氧反应(OER)配对,由于OER的高能量需求和低生成值,极大地限制了系统的整体效率。本文提出了一个可扩展的电化学平台,将CO2RR与5-羟甲基糠醛(HMF)氧化偶联成高价值产品2,5-呋喃二羧酸(FDCA)。采用Fenton-like表面处理制备的双金属feo修饰镍阳极,通过氧化稳定的cannizzaro衍生中间体,在工业相关条件下获得了95%的FDCA产率和法拉第效率。在电化学液流电池中集成CO2RR,使合成气生产具有可调的H2/CO比(0.1-4)和>92%的总法拉第效率。同时,在阳极制备FDCA,法拉第效率≈89%,产率超过90%。经济分析表明,整体能源效率提高了11-12%,FDCA贡献了超过96%的系统收入。这项工作建立了一个可扩展的、节能的平台,同时利用二氧化碳和生物质升级,推进可持续的电化学生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信