{"title":"Phosphoric Acid-Immobilized Polybenzimidazole Hybrid Membranes with TiO2 Nanowires for High-Temperature Polymer Electrolyte Membrane Fuel Cells","authors":"Ryo Kato, Yuki Nakamura, Keiichiro Maegawa, Reiko Matsuda, Masayo Takahashi, Satoshi Obokata, Kazuhiro Hikima, Atsunori Matsuda","doi":"10.1002/celc.202500238","DOIUrl":null,"url":null,"abstract":"<p>Polymer electrolyte membrane fuel cells (PEMFCs) have attracted significant attention as next-generation clean compact power sources. In this study phosphoric-acid-doped polybenzimidazole (PBI) membranes with added itanium dioxide nanowires are prepared to afford novel hybrid membranes that improve the performance and reliability of PEMFCs. Furthermore, the electrochemical and power generation properties of membrane-electrode assemblies fabricated using the prepared hybrid electrolyte membranes are investigated. The swelling of the PBI membrane caused by phosphoric acid doping is suppressed by the titanium dioxide nanowires, thereby increasing the phosphoric acid concentration in the PBI membrane, even with very low dopant loadings. The increased proton conductivity and maximum power density are attributed to the increased phosphoric acid concentration in the membrane.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500238","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) have attracted significant attention as next-generation clean compact power sources. In this study phosphoric-acid-doped polybenzimidazole (PBI) membranes with added itanium dioxide nanowires are prepared to afford novel hybrid membranes that improve the performance and reliability of PEMFCs. Furthermore, the electrochemical and power generation properties of membrane-electrode assemblies fabricated using the prepared hybrid electrolyte membranes are investigated. The swelling of the PBI membrane caused by phosphoric acid doping is suppressed by the titanium dioxide nanowires, thereby increasing the phosphoric acid concentration in the PBI membrane, even with very low dopant loadings. The increased proton conductivity and maximum power density are attributed to the increased phosphoric acid concentration in the membrane.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.