Toward Practical Quasi-Solid-State Batteries: Thin Lithium Phosphorous Oxynitride Layer on Slurry-Based Graphite Electrodes

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Julia Cipo, Sandra Hansen, Tim Tjardts, Ulrich Schürmann, Christian Werlich, Nils Voß, Florian Ziegler, Ainura Aliyeva, Reinhard Mörtel, Thomas Strunskus, Lorenz Kienle, Andreas Würsig, Fabian Lofink
{"title":"Toward Practical Quasi-Solid-State Batteries: Thin Lithium Phosphorous Oxynitride Layer on Slurry-Based Graphite Electrodes","authors":"Julia Cipo,&nbsp;Sandra Hansen,&nbsp;Tim Tjardts,&nbsp;Ulrich Schürmann,&nbsp;Christian Werlich,&nbsp;Nils Voß,&nbsp;Florian Ziegler,&nbsp;Ainura Aliyeva,&nbsp;Reinhard Mörtel,&nbsp;Thomas Strunskus,&nbsp;Lorenz Kienle,&nbsp;Andreas Würsig,&nbsp;Fabian Lofink","doi":"10.1002/celc.202500180","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a novel quasi-solid-state battery system as a proof of concept. A 55-nm solid-state electrolyte layer of lithium phosphorous oxynitride (LiPON) is deposited on slurry-based graphite electrodes and assembled against lithium metal to evaluate interfacial compatibility and electrochemical performance under controlled conditions. In contrast to thin-film quasi-solid-state batteries, this approach leverages a realistic electrode architecture, where LiPON adjusts to the rough surface of the slurry-cast graphite. By utilizing LiPON's dual functionality as both a solid-state electrolyte and a separator, the system eliminates the need for a conventional separator, while requiring only 5–10% of the liquid electrolyte used in equivalent systems. This design significantly reduces internal resistance and prevents contact loss during cyclic volume changes. Electrochemical analyses, including cyclic voltammetry, galvanostatic cycling, and impedance spectroscopy, demonstrate lithium intercalation stages consistent with those in liquid electrolyte-based systems, stable cycling behavior at room temperature and reduced electrode impedance of a few 10 Ω cm<sup>2</sup>. Furthermore, X-ray photoelectron spectroscopy and scanning transmission electron microscopy confirm the formation of a solid–liquid electrolyte interface and the structural integrity of LiPON, which enhances charge transfer and long-term stability. These findings highlight the potential of quasi-solid-state batteries for safer, more compact, and cost-effective energy storage solutions.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500180","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500180","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel quasi-solid-state battery system as a proof of concept. A 55-nm solid-state electrolyte layer of lithium phosphorous oxynitride (LiPON) is deposited on slurry-based graphite electrodes and assembled against lithium metal to evaluate interfacial compatibility and electrochemical performance under controlled conditions. In contrast to thin-film quasi-solid-state batteries, this approach leverages a realistic electrode architecture, where LiPON adjusts to the rough surface of the slurry-cast graphite. By utilizing LiPON's dual functionality as both a solid-state electrolyte and a separator, the system eliminates the need for a conventional separator, while requiring only 5–10% of the liquid electrolyte used in equivalent systems. This design significantly reduces internal resistance and prevents contact loss during cyclic volume changes. Electrochemical analyses, including cyclic voltammetry, galvanostatic cycling, and impedance spectroscopy, demonstrate lithium intercalation stages consistent with those in liquid electrolyte-based systems, stable cycling behavior at room temperature and reduced electrode impedance of a few 10 Ω cm2. Furthermore, X-ray photoelectron spectroscopy and scanning transmission electron microscopy confirm the formation of a solid–liquid electrolyte interface and the structural integrity of LiPON, which enhances charge transfer and long-term stability. These findings highlight the potential of quasi-solid-state batteries for safer, more compact, and cost-effective energy storage solutions.

Abstract Image

迈向实用的准固态电池:浆料基石墨电极上的薄氧化氮化磷锂层
本研究介绍了一种新型准固态电池系统作为概念验证。将一层55 nm的氧化氮化磷锂(LiPON)固态电解质层沉积在浆料基石墨电极上,并与金属锂组装在一起,在受控条件下评估界面相容性和电化学性能。与薄膜准固态电池相比,这种方法利用了一种现实的电极结构,LiPON可以适应浆料铸造石墨的粗糙表面。通过利用LiPON作为固态电解质和分离器的双重功能,该系统消除了对传统分离器的需求,同时只需要等效系统中使用的液体电解质的5-10%。这种设计显著降低了内阻,防止了循环体积变化过程中的接触损耗。电化学分析,包括循环伏安法、恒流循环和阻抗谱,证明了锂的插入阶段与液体电解质体系一致,在室温下稳定的循环行为,电极阻抗降低了10 Ω cm2。此外,x射线光电子能谱和扫描透射电镜证实了LiPON的固液电解质界面的形成和结构的完整性,增强了电荷转移和长期稳定性。这些发现突出了准固态电池在更安全、更紧凑、更具成本效益的储能解决方案方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信