Tin-based perovskite solar cells with a homogeneous buried interface.

IF 48.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2025-10-15 DOI:10.1038/s41586-025-09724-2
Tianpeng Li,Xin Luo,Peilin Wang,Zhi Li,Yimeng Li,Jinhai Huang,Zuoming Jin,Yingguo Yang,Bin Li,Wenqi Zhang,Siyuan Lin,Yichuan Rui,Hua Wang,Qinghong Zhang,Yiqiang Zhan,Bo Xu,Jia Liang,Yabing Qi
{"title":"Tin-based perovskite solar cells with a homogeneous buried interface.","authors":"Tianpeng Li,Xin Luo,Peilin Wang,Zhi Li,Yimeng Li,Jinhai Huang,Zuoming Jin,Yingguo Yang,Bin Li,Wenqi Zhang,Siyuan Lin,Yichuan Rui,Hua Wang,Qinghong Zhang,Yiqiang Zhan,Bo Xu,Jia Liang,Yabing Qi","doi":"10.1038/s41586-025-09724-2","DOIUrl":null,"url":null,"abstract":"Tin-based perovskite solar cells (TPSCs) have emerged as a promising non-toxic and environmentally friendly alternative to lead-based devices1-3, with certified power conversion efficiencies (PCEs) of inverted architectures now exceeding 16%4-8. Despite an ideal bandgap supporting a theoretical PCE over 33%, TPSCs still lag in performance and stability, partly due to suboptimal hole transport layers and poor buried interface that hinder hole extraction. Here, we report (E)-(2-(4',5'-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)-1-cyanovinyl)phosphonic acid at the buried interface, using a molecular film to optimize hole transport layers in inverted TPSCs. This molecular film forms a homogeneous interfacial layer with well-matched energy level alignment, significantly enhancing hole extraction. Moreover, this approach creates a superwetting underlayer that guides the growth of uniform, high-quality Sn-based perovskite films with reduced defect density and minimized non-radiative recombination losses. The resulting inverted small-area TPSCs demonstrate a record PCE of 17.89% (certified 17.71% under reverse scanning mode). Furthermore, the encapsulated device maintains over 95% of the initial PCE after 1344 h of ambient shelf storage and over 94% after 1550 h of continuous operation under 1-sun illumination. Notably, we achieve a record PCE of 14.40% for 1 cm2 TPSCs, highlighting the scalability of our strategy.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"11 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09724-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tin-based perovskite solar cells (TPSCs) have emerged as a promising non-toxic and environmentally friendly alternative to lead-based devices1-3, with certified power conversion efficiencies (PCEs) of inverted architectures now exceeding 16%4-8. Despite an ideal bandgap supporting a theoretical PCE over 33%, TPSCs still lag in performance and stability, partly due to suboptimal hole transport layers and poor buried interface that hinder hole extraction. Here, we report (E)-(2-(4',5'-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-[2,2'-bithiophen]-5-yl)-1-cyanovinyl)phosphonic acid at the buried interface, using a molecular film to optimize hole transport layers in inverted TPSCs. This molecular film forms a homogeneous interfacial layer with well-matched energy level alignment, significantly enhancing hole extraction. Moreover, this approach creates a superwetting underlayer that guides the growth of uniform, high-quality Sn-based perovskite films with reduced defect density and minimized non-radiative recombination losses. The resulting inverted small-area TPSCs demonstrate a record PCE of 17.89% (certified 17.71% under reverse scanning mode). Furthermore, the encapsulated device maintains over 95% of the initial PCE after 1344 h of ambient shelf storage and over 94% after 1550 h of continuous operation under 1-sun illumination. Notably, we achieve a record PCE of 14.40% for 1 cm2 TPSCs, highlighting the scalability of our strategy.
具有均匀埋藏界面的锡基钙钛矿太阳能电池。
锡基钙钛矿太阳能电池(TPSCs)已经成为一种有前途的无毒环保的铅基设备替代品,倒置结构的认证功率转换效率(pce)现在超过16%4-8。尽管理想带隙支持理论PCE超过33%,但TPSCs的性能和稳定性仍然落后,部分原因是次优的空穴传输层和较差的埋藏界面阻碍了空穴提取。在这里,我们报道了(E)-(2-(4',5'-双(4-(双(4-甲氧基苯基)氨基)苯基)-[2,2'-双噻吩]-5-基)-1-氰乙烯基)膦酸在埋藏界面处,使用分子膜优化了倒置TPSCs的空穴传输层。该分子膜形成均匀的界面层,具有良好匹配的能级排列,显著提高了空穴的提取。此外,这种方法创造了一种超湿润下层,指导均匀、高质量的sn基钙钛矿薄膜的生长,降低了缺陷密度,最大限度地减少了非辐射复合损失。由此产生的倒置小面积TPSCs显示出创纪录的PCE为17.89%(在反向扫描模式下认证为17.71%)。此外,封装装置在1344小时的环境货架储存后保持95%以上的初始PCE,在1个太阳光照下连续运行1550小时后保持94%以上的初始PCE。值得注意的是,我们在1平方厘米的TPSCs上实现了创纪录的14.40%的PCE,突出了我们战略的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信