Christian D. F. Castenschiold, Claudia Mignani, Sigurd Christiansen, Malin Alsved, Luisa Ickes, Sylvie V. M. Tesson, Jakob Löndahl, Merete Bilde, Thomas Bataillon, Kai Finster, Tina Šantl-Temkiv
{"title":"Atmospheric Biogenic Ice-Nucleating Particles Link to Microbial Communities in the Arctic Marine Environment in Western Greenland","authors":"Christian D. F. Castenschiold, Claudia Mignani, Sigurd Christiansen, Malin Alsved, Luisa Ickes, Sylvie V. M. Tesson, Jakob Löndahl, Merete Bilde, Thomas Bataillon, Kai Finster, Tina Šantl-Temkiv","doi":"10.1021/acs.est.5c03650","DOIUrl":null,"url":null,"abstract":"Biogenic ice-nucleating particles (INPs) can significantly impact mixed-phase clouds by enhancing precipitation and reducing albedo. As Arctic sea ice diminishes, the exposure of open ocean may increase aerosolization rates of marine bioaerosols and INPs. We investigated INP concentrations and microbial communities in ambient marine air, sea bulk water (SBW), and sea surface microlayer (SML) along a transect from the Davis Strait to Baffin Bay. INP concentrations in SBW increased with latitude, regardless of the extent of terrestrial freshwater input. We further identified correlations between INP levels and abundances of specific microbial taxa, including <i>Formosa</i>, <i>Lewinella</i>, <i>Micromonas</i>, and Dino-Group-I-Clade-5, suggesting potential ice nucleation activity of these taxa. Air samples exhibited distinct microbiomes compared to seawater, indicating terrestrial contributions, but at the highest observed wind speeds (7–8 m/s), substantial contributions of the seawater microbiome were detected in the air. Elevated atmospheric INP concentrations at higher latitudes correlated with seawater INP levels, which was supported by laboratory sea spray experiments showing that INPs in SBW influenced aerosol INP levels. Our findings highlight the Arctic Ocean as a significant source of biogenic atmospheric INPs and enhance our understanding of marine microbes as contributors to biogenic INPs. By identification of potential ice nucleation active microbial taxa and examination of aerosolization processes, this study provides a framework for future research on Arctic marine-derived INPs and their atmospheric impact.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"1 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c03650","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biogenic ice-nucleating particles (INPs) can significantly impact mixed-phase clouds by enhancing precipitation and reducing albedo. As Arctic sea ice diminishes, the exposure of open ocean may increase aerosolization rates of marine bioaerosols and INPs. We investigated INP concentrations and microbial communities in ambient marine air, sea bulk water (SBW), and sea surface microlayer (SML) along a transect from the Davis Strait to Baffin Bay. INP concentrations in SBW increased with latitude, regardless of the extent of terrestrial freshwater input. We further identified correlations between INP levels and abundances of specific microbial taxa, including Formosa, Lewinella, Micromonas, and Dino-Group-I-Clade-5, suggesting potential ice nucleation activity of these taxa. Air samples exhibited distinct microbiomes compared to seawater, indicating terrestrial contributions, but at the highest observed wind speeds (7–8 m/s), substantial contributions of the seawater microbiome were detected in the air. Elevated atmospheric INP concentrations at higher latitudes correlated with seawater INP levels, which was supported by laboratory sea spray experiments showing that INPs in SBW influenced aerosol INP levels. Our findings highlight the Arctic Ocean as a significant source of biogenic atmospheric INPs and enhance our understanding of marine microbes as contributors to biogenic INPs. By identification of potential ice nucleation active microbial taxa and examination of aerosolization processes, this study provides a framework for future research on Arctic marine-derived INPs and their atmospheric impact.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.