Aria H. Duncan, Natalia Armenta, Frida Garcia-Ledezma, Celine A. Heck, Sylvia Hafner, Britta Planer-Friedrich, Scott Fendorf
{"title":"Alternate Wetting and Drying Limits Arsenic in Porewater and Rice Grain under Severe Future Climate Conditions","authors":"Aria H. Duncan, Natalia Armenta, Frida Garcia-Ledezma, Celine A. Heck, Sylvia Hafner, Britta Planer-Friedrich, Scott Fendorf","doi":"10.1021/acs.est.5c03552","DOIUrl":null,"url":null,"abstract":"Climate change, coupled with widespread soil arsenic (As) contamination, is expected to decrease rice yields and increase grain As, threatening food security. One promising mitigation strategy is alternate wetting and drying (AWD) irrigation. However, AWD has not previously been tested under potential future climate conditions. Using rhizoboxes to visualize the rhizosphere, we evaluated the efficacy of AWD for limiting porewater and grain As under both current (daily high of 33 °C and 420 ppmv CO<sub>2</sub>) and severe warming conditions (daily high of 38 °C and 850 ppmv CO<sub>2</sub>). Compared to continuous flooding, AWD decreased cumulative As exposure 10 cm below the surface by 8.2× under a 33 °C climate and by 15.9× under a 38 °C climate. Grain total As concentrations decreased by 1.5× with AWD under a 33 °C climate and by 1.3× under a 38 °C climate. Porewater cadmium (Cd) concentrations often increased following drainage but never exceeded 1 μg L<sup>–1</sup>, and grain Cd concentrations were 14.7× to 119.7× lower than grain As concentrations. Both AWD and the 38 °C and 850 ppmv CO<sub>2</sub> climate conditions enhanced root growth. Our findings indicate that AWD may still be an effective As mitigation strategy under severe future climate conditions.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"11 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c03552","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change, coupled with widespread soil arsenic (As) contamination, is expected to decrease rice yields and increase grain As, threatening food security. One promising mitigation strategy is alternate wetting and drying (AWD) irrigation. However, AWD has not previously been tested under potential future climate conditions. Using rhizoboxes to visualize the rhizosphere, we evaluated the efficacy of AWD for limiting porewater and grain As under both current (daily high of 33 °C and 420 ppmv CO2) and severe warming conditions (daily high of 38 °C and 850 ppmv CO2). Compared to continuous flooding, AWD decreased cumulative As exposure 10 cm below the surface by 8.2× under a 33 °C climate and by 15.9× under a 38 °C climate. Grain total As concentrations decreased by 1.5× with AWD under a 33 °C climate and by 1.3× under a 38 °C climate. Porewater cadmium (Cd) concentrations often increased following drainage but never exceeded 1 μg L–1, and grain Cd concentrations were 14.7× to 119.7× lower than grain As concentrations. Both AWD and the 38 °C and 850 ppmv CO2 climate conditions enhanced root growth. Our findings indicate that AWD may still be an effective As mitigation strategy under severe future climate conditions.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.