Reprocessable and Recyclable Cellulosic Network Polymers with Intrinsic Flame Retardancy via Dynamic Covalent Cross-Linking

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-16 DOI:10.1021/acsnano.5c16164
Guowen Zhou, Zhixing Huang, Ruotong Du, Zepeng Lei, Xiaohui Wang
{"title":"Reprocessable and Recyclable Cellulosic Network Polymers with Intrinsic Flame Retardancy via Dynamic Covalent Cross-Linking","authors":"Guowen Zhou, Zhixing Huang, Ruotong Du, Zepeng Lei, Xiaohui Wang","doi":"10.1021/acsnano.5c16164","DOIUrl":null,"url":null,"abstract":"Developing sustainable, high-performance biobased materials is critical for reducing dependence on petroleum-derived plastics. Cellulose is the most abundant and renewable polymer resource, yet current cellulose-based materials often suffer from limitations such as flammability, water sensitivity, limited processability, and recyclability in practical use. Herein, we propose an integrated strategy to reconfigure cellulose’s hydrogen-bonded network into a dynamic covalent architecture while incorporating flame-retardant units in situ. The resulting thermo-processable cellulosic network polymers (CAA–DDPNs) exhibit high tensile strength (46–65 MPa), self-extinguishing behavior, and resistance to both water and common organic solvents. Compared with several engineering plastics, CAA-DDPN films demonstrate higher thermal stability (onset 281–301 °C) and an ultralow coefficient of thermal expansion (0.9–1.8 ppm K<sup>–1</sup>). More importantly, the dynamic linkers enable efficient chemical depolymerization to recover monomers, thereby overcoming the limited chemical recyclability of prior cellulose materials. The combination of mechanical robustness, thermal and chemical resilience, flame retardancy, and circularity makes CAA-DDPNs a viable, eco-friendly alternative to conventional petroleum-based plastics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c16164","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing sustainable, high-performance biobased materials is critical for reducing dependence on petroleum-derived plastics. Cellulose is the most abundant and renewable polymer resource, yet current cellulose-based materials often suffer from limitations such as flammability, water sensitivity, limited processability, and recyclability in practical use. Herein, we propose an integrated strategy to reconfigure cellulose’s hydrogen-bonded network into a dynamic covalent architecture while incorporating flame-retardant units in situ. The resulting thermo-processable cellulosic network polymers (CAA–DDPNs) exhibit high tensile strength (46–65 MPa), self-extinguishing behavior, and resistance to both water and common organic solvents. Compared with several engineering plastics, CAA-DDPN films demonstrate higher thermal stability (onset 281–301 °C) and an ultralow coefficient of thermal expansion (0.9–1.8 ppm K–1). More importantly, the dynamic linkers enable efficient chemical depolymerization to recover monomers, thereby overcoming the limited chemical recyclability of prior cellulose materials. The combination of mechanical robustness, thermal and chemical resilience, flame retardancy, and circularity makes CAA-DDPNs a viable, eco-friendly alternative to conventional petroleum-based plastics.

Abstract Image

通过动态共价交联制备具有内在阻燃性的可再加工和可回收纤维素网络聚合物
开发可持续、高性能的生物基材料对于减少对石油衍生塑料的依赖至关重要。纤维素是最丰富和可再生的聚合物资源,但目前的纤维素基材料在实际使用中经常受到诸如易燃性,水敏感性,有限的加工性和可回收性等限制。在此,我们提出了一种综合策略,将纤维素的氢键网络重新配置为动态共价结构,同时在原位加入阻燃单元。所得的可热加工纤维素网络聚合物(caa - ddpn)具有高拉伸强度(46-65 MPa),自熄性,耐水和普通有机溶剂。与几种工程塑料相比,CAA-DDPN薄膜具有更高的热稳定性(起始温度为281-301°C)和超低的热膨胀系数(0.9-1.8 ppm K-1)。更重要的是,动态连接剂能够有效的化学解聚来回收单体,从而克服了现有纤维素材料有限的化学可回收性。机械稳健性、热弹性和化学弹性、阻燃性和圆度的结合,使caa - ddpn成为传统石油基塑料的可行、环保替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信