Nanoparticle-boosted myeloid-derived suppressor cell therapy for immune reprogramming in multiple sclerosis

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Endong Zhang, Hanan Algarni, Luyu Zhang, Chih-Jia Chao, Shan He, Aditi Upadhye, Qing Bao, Dahee Jung, Shubhi Srivastava, Edidiong Udofa, Philana Phan, Dejan S. Nikolic, Steve Seung-Young Lee, Jalees Rehman, Zongmin Zhao
{"title":"Nanoparticle-boosted myeloid-derived suppressor cell therapy for immune reprogramming in multiple sclerosis","authors":"Endong Zhang,&nbsp;Hanan Algarni,&nbsp;Luyu Zhang,&nbsp;Chih-Jia Chao,&nbsp;Shan He,&nbsp;Aditi Upadhye,&nbsp;Qing Bao,&nbsp;Dahee Jung,&nbsp;Shubhi Srivastava,&nbsp;Edidiong Udofa,&nbsp;Philana Phan,&nbsp;Dejan S. Nikolic,&nbsp;Steve Seung-Young Lee,&nbsp;Jalees Rehman,&nbsp;Zongmin Zhao","doi":"10.1126/sciadv.ady4135","DOIUrl":null,"url":null,"abstract":"<div >Massive immune cell infiltration and persistent inflammation in the central nervous system (CNS) are key hallmarks of multiple sclerosis. Here, we report a myeloid-derived suppressor cell (MDSC)–based therapeutic strategy, named CNS Immune Targeting Enabled by MDSCs (CITED), which uses surface-decorated MDSCs carrying rapamycin nanoparticles (NPs) for targeted multimodal immune reprogramming in CNS. We show that NP decoration enhances MDSC immunomodulatory function, facilitates their trafficking to inflamed CNS regions, and increases NP accumulation within CNS. In an experimental autoimmune encephalomyelitis model, CITED exhibited robust therapeutic efficacy, resulting in reduced disease progression, improved motor function, and diminished myelin damage. Mechanistic studies reveal that CITED exerts its therapeutic effects by targeted reprogramming of both innate and adaptive immune responses in CNS. Specifically, CITED inhibits immune cell infiltration, rebalances CD4 T cell phenotypes, and promotes the polarization of myeloid cells toward anti-inflammatory phenotypes. Collectively, CITED could provide a broadly effective approach for targeted immune restoration in multiple sclerosis and potentially other autoimmune diseases.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 42","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady4135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady4135","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Massive immune cell infiltration and persistent inflammation in the central nervous system (CNS) are key hallmarks of multiple sclerosis. Here, we report a myeloid-derived suppressor cell (MDSC)–based therapeutic strategy, named CNS Immune Targeting Enabled by MDSCs (CITED), which uses surface-decorated MDSCs carrying rapamycin nanoparticles (NPs) for targeted multimodal immune reprogramming in CNS. We show that NP decoration enhances MDSC immunomodulatory function, facilitates their trafficking to inflamed CNS regions, and increases NP accumulation within CNS. In an experimental autoimmune encephalomyelitis model, CITED exhibited robust therapeutic efficacy, resulting in reduced disease progression, improved motor function, and diminished myelin damage. Mechanistic studies reveal that CITED exerts its therapeutic effects by targeted reprogramming of both innate and adaptive immune responses in CNS. Specifically, CITED inhibits immune cell infiltration, rebalances CD4 T cell phenotypes, and promotes the polarization of myeloid cells toward anti-inflammatory phenotypes. Collectively, CITED could provide a broadly effective approach for targeted immune restoration in multiple sclerosis and potentially other autoimmune diseases.

Abstract Image

纳米颗粒增强骨髓源性抑制细胞治疗多发性硬化症免疫重编程
大量免疫细胞浸润和中枢神经系统(CNS)的持续炎症是多发性硬化症的关键标志。在这里,我们报道了一种基于髓源性抑制细胞(MDSC)的治疗策略,命名为由MDSCs激活的CNS免疫靶向(引),它使用表面修饰的MDSCs携带雷帕霉素纳米颗粒(NPs)在CNS中进行靶向多模态免疫重编程。我们发现NP修饰增强了MDSC的免疫调节功能,促进了它们向炎症中枢神经系统区域的运输,并增加了中枢神经系统内NP的积累。在实验性自身免疫性脑脊髓炎模型中,引用显示出强大的治疗效果,导致疾病进展减少,运动功能改善,髓鞘损伤减少。机制研究表明,引物通过靶向重编程中枢神经系统的先天和适应性免疫反应来发挥其治疗作用。具体来说,引用抑制免疫细胞浸润,重新平衡CD4 T细胞表型,促进骨髓细胞向抗炎表型极化。总的来说,cite可以为多发性硬化症和其他潜在的自身免疫性疾病的靶向免疫恢复提供广泛有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信