Onset of slab mantle melting in Earth’s lower mantle: Evidence from ferropericlase in superdeep diamonds

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Peng Ni, Steven B. Shirey, Michael J. Walter, Janina Czas, Davide Novella, Fabrizio Nestola, Nico Kueter, Evan M. Smith, Thomas Stachel, D. Graham Pearson, Andrew Steele, Laura L. Gardner, Steven D. Jacobsen, Ben Harte, Jeffrey W. Harris, Anat Shahar
{"title":"Onset of slab mantle melting in Earth’s lower mantle: Evidence from ferropericlase in superdeep diamonds","authors":"Peng Ni,&nbsp;Steven B. Shirey,&nbsp;Michael J. Walter,&nbsp;Janina Czas,&nbsp;Davide Novella,&nbsp;Fabrizio Nestola,&nbsp;Nico Kueter,&nbsp;Evan M. Smith,&nbsp;Thomas Stachel,&nbsp;D. Graham Pearson,&nbsp;Andrew Steele,&nbsp;Laura L. Gardner,&nbsp;Steven D. Jacobsen,&nbsp;Ben Harte,&nbsp;Jeffrey W. Harris,&nbsp;Anat Shahar","doi":"10.1126/sciadv.adt9106","DOIUrl":null,"url":null,"abstract":"<div >Ferropericlase ([Mg<sub>x</sub>,Fe<sub>1-x</sub>]O), the most common inclusion in sublithospheric diamonds, has a poorly understood crystallization history and depth of origin. Nineteen microscopic ferropericlase grains with different Mg#s were released from Juína and Kankan diamonds with mantle-like carbon, for Mg and Fe isotopic analysis. Two groups of ferropericlase inclusions can be distinguished with respect to diamond growth: high-Mg# inclusions with mantle-like Mg and Fe (δ<sup>26</sup>Mg = −0.23 ± 0.22‰; δ<sup>56</sup>Fe = 0.00 ± 0.14‰) inferred to be preexisting and lower Mg# inclusions with non–mantle-like heavy Fe (δ<sup>56</sup>Fe up to +0.3‰) and light Mg (δ<sup>26</sup>Mg down to −1.4‰) inferred to be coeval. We propose that coeval ferropericlase inclusions formed by melting of hydrated and carbonated peridotitic slab components subducted to lower mantle depths. Continuous reaction of these melts with surrounding reduced, dry slab harzburgite can produce the large range in Mg# and Ni contents of our ferropericlase suite—a heretofore unexplained feature of global ferropericlase data.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 42","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt9106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt9106","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ferropericlase ([Mgx,Fe1-x]O), the most common inclusion in sublithospheric diamonds, has a poorly understood crystallization history and depth of origin. Nineteen microscopic ferropericlase grains with different Mg#s were released from Juína and Kankan diamonds with mantle-like carbon, for Mg and Fe isotopic analysis. Two groups of ferropericlase inclusions can be distinguished with respect to diamond growth: high-Mg# inclusions with mantle-like Mg and Fe (δ26Mg = −0.23 ± 0.22‰; δ56Fe = 0.00 ± 0.14‰) inferred to be preexisting and lower Mg# inclusions with non–mantle-like heavy Fe (δ56Fe up to +0.3‰) and light Mg (δ26Mg down to −1.4‰) inferred to be coeval. We propose that coeval ferropericlase inclusions formed by melting of hydrated and carbonated peridotitic slab components subducted to lower mantle depths. Continuous reaction of these melts with surrounding reduced, dry slab harzburgite can produce the large range in Mg# and Ni contents of our ferropericlase suite—a heretofore unexplained feature of global ferropericlase data.

Abstract Image

地球下地幔板块地幔融化的开始:来自超深钻石中铁长石的证据
铁方长石([Mg x,Fe 1-x]O)是岩石圈下钻石中最常见的包裹体,其结晶历史和起源深度尚不清楚。从Juína和Kankan两种具有地幔样碳的钻石中释放出19个不同Mg#s的显微铁方长石颗粒,进行了Mg和Fe同位素分析。在金刚石生长方面,可以区分出两组铁镁长石包裹体:具有地幔样Mg和Fe的高Mg#包裹体(δ 26 Mg = - 0.23±0.22‰;δ 56 Fe = 0.00±0.14‰)推断为已存在,而具有非地幔样重铁(δ 56 Fe高达+0.3‰)和轻Mg (δ 26 Mg低至- 1.4‰)的低Mg#包裹体推断为同期存在。我们认为同时期的铁方长石包裹体是由俯冲到下地幔深处的水合和碳酸化橄榄岩板块组分熔融形成的。这些熔体与周围还原的干板状硬锰矿的连续反应可以产生我们的镁长石组中Mg#和Ni含量的大范围变化,这是迄今为止全球镁长石数据无法解释的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信