{"title":"Color-magnetic correlations in SU(2) and SU(3) lattice QCD","authors":"Atsuya Tokutake, Kei Tohme, Hideo Suganuma","doi":"10.1103/1n8n-xlnp","DOIUrl":null,"url":null,"abstract":"We study the two-point field-strength correlation g</a:mi>2</a:mn></a:msup>⟨</a:mo>G</a:mi>μ</a:mi>ν</a:mi></a:mrow>a</a:mi></a:msubsup>(</a:mo>s</a:mi>)</a:mo>G</a:mi>α</a:mi>β</a:mi></a:mrow>b</a:mi></a:msubsup>(</a:mo>s</a:mi>′</a:mo></a:msup>)</a:mo>⟩</a:mo></a:math> in the Landau gauge in SU(2) and SU(3) quenched lattice QCD, as well as the gluon propagator <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msup><i:mi>g</i:mi><i:mn>2</i:mn></i:msup><i:mo stretchy=\"false\">⟨</i:mo><i:msubsup><i:mi>A</i:mi><i:mi>μ</i:mi><i:mi>a</i:mi></i:msubsup><i:mo stretchy=\"false\">(</i:mo><i:mi>s</i:mi><i:mo stretchy=\"false\">)</i:mo><i:msubsup><i:mi>A</i:mi><i:mi>ν</i:mi><i:mi>b</i:mi></i:msubsup><i:mo stretchy=\"false\">(</i:mo><i:msup><i:mi>s</i:mi><i:mo>′</i:mo></i:msup><i:mo stretchy=\"false\">)</i:mo><i:mo stretchy=\"false\">⟩</i:mo></i:math>. The Landau-gauge gluon propagator <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msup><q:mi>g</q:mi><q:mn>2</q:mn></q:msup><q:mo stretchy=\"false\">⟨</q:mo><q:msubsup><q:mi>A</q:mi><q:mi>μ</q:mi><q:mi>a</q:mi></q:msubsup><q:mo stretchy=\"false\">(</q:mo><q:mi>s</q:mi><q:mo stretchy=\"false\">)</q:mo><q:msubsup><q:mi>A</q:mi><q:mi>μ</q:mi><q:mi>a</q:mi></q:msubsup><q:mo stretchy=\"false\">(</q:mo><q:msup><q:mi>s</q:mi><q:mo>′</q:mo></q:msup><q:mo stretchy=\"false\">)</q:mo><q:mo stretchy=\"false\">⟩</q:mo></q:math> is well described by the Yukawa-type function <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msup><y:mi>e</y:mi><y:mrow><y:mo>−</y:mo><y:mi>m</y:mi><y:mi>r</y:mi></y:mrow></y:msup><y:mo>/</y:mo><y:mi>r</y:mi></y:math> with r</ab:mi>≡</ab:mo>|</ab:mo>s</ab:mi>−</ab:mo>s</ab:mi>′</ab:mo></ab:msup>|</ab:mo></ab:math> for <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>r</eb:mi><eb:mo>=</eb:mo><eb:mn>0.1</eb:mn><eb:mi>–</eb:mi><eb:mn>1.0</eb:mn><eb:mtext> </eb:mtext><eb:mtext> </eb:mtext><eb:mi>fm</eb:mi></eb:math> in both SU(2) and SU(3) QCD. Next, motivated by color-magnetic instabilities in the QCD vacuum, we investigate the perpendicular-type color-magnetic correlation, <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mrow><gb:msub><gb:mrow><gb:mi>C</gb:mi></gb:mrow><gb:mrow><gb:mo>⊥</gb:mo></gb:mrow></gb:msub><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>r</gb:mi><gb:mo stretchy=\"false\">)</gb:mo><gb:mo>≡</gb:mo><gb:msup><gb:mrow><gb:mi>g</gb:mi></gb:mrow><gb:mrow><gb:mn>2</gb:mn></gb:mrow></gb:msup><gb:mo stretchy=\"false\">⟨</gb:mo><gb:msubsup><gb:mrow><gb:mi>H</gb:mi></gb:mrow><gb:mrow><gb:mi>z</gb:mi></gb:mrow><gb:mrow><gb:mi>a</gb:mi></gb:mrow></gb:msubsup><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>s</gb:mi><gb:mo stretchy=\"false\">)</gb:mo><gb:msubsup><gb:mrow><gb:mi>H</gb:mi></gb:mrow><gb:mrow><gb:mi>z</gb:mi></gb:mrow><gb:mrow><gb:mi>a</gb:mi></gb:mrow></gb:msubsup><gb:mo stretchy=\"false\">(</gb:mo><gb:mi>s</gb:mi><gb:mo>+</gb:mo><gb:mi>r</gb:mi><gb:mover accent=\"true\"><gb:mrow><gb:mo>⊥</gb:mo></gb:mrow><gb:mrow><gb:mo stretchy=\"false\">^</gb:mo></gb:mrow></gb:mover><gb:mo stretchy=\"false\">)</gb:mo><gb:mo stretchy=\"false\">)</gb:mo><gb:mo stretchy=\"false\">⟩</gb:mo></gb:mrow></gb:math> (<tb:math xmlns:tb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><tb:mrow><tb:mover accent=\"true\"><tb:mrow><tb:mo>⊥</tb:mo></tb:mrow><tb:mrow><tb:mo stretchy=\"false\">^</tb:mo></tb:mrow></tb:mover></tb:mrow></tb:math>: unit vector on the <xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:mi>x</xb:mi><xb:mi>y</xb:mi></xb:math> plane), and the parallel-type one, <zb:math xmlns:zb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><zb:mrow><zb:msub><zb:mrow><zb:mi>C</zb:mi></zb:mrow><zb:mrow><zb:mo stretchy=\"false\">∥</zb:mo></zb:mrow></zb:msub><zb:mo stretchy=\"false\">(</zb:mo><zb:mi>r</zb:mi><zb:mo stretchy=\"false\">)</zb:mo><zb:mo>≡</zb:mo><zb:msup><zb:mrow><zb:mi>g</zb:mi></zb:mrow><zb:mrow><zb:mn>2</zb:mn></zb:mrow></zb:msup><zb:mo stretchy=\"false\">⟨</zb:mo><zb:msubsup><zb:mrow><zb:mi>H</zb:mi></zb:mrow><zb:mrow><zb:mi>z</zb:mi></zb:mrow><zb:mrow><zb:mi>a</zb:mi></zb:mrow></zb:msubsup><zb:mo stretchy=\"false\">(</zb:mo><zb:mi>s</zb:mi><zb:mo stretchy=\"false\">)</zb:mo><zb:msubsup><zb:mrow><zb:mi>H</zb:mi></zb:mrow><zb:mrow><zb:mi>z</zb:mi></zb:mrow><zb:mrow><zb:mi>a</zb:mi></zb:mrow></zb:msubsup><zb:mo stretchy=\"false\">(</zb:mo><zb:mi>s</zb:mi><zb:mo>+</zb:mo><zb:mi>r</zb:mi><zb:mover accent=\"true\"><zb:mrow><zb:mo stretchy=\"false\">∥</zb:mo></zb:mrow><zb:mrow><zb:mo>^</zb:mo></zb:mrow></zb:mover><zb:mo stretchy=\"false\">)</zb:mo><zb:mo stretchy=\"false\">⟩</zb:mo></zb:mrow></zb:math> (<mc:math xmlns:mc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mc:mrow><mc:mover accent=\"true\"><mc:mrow><mc:mo stretchy=\"false\">∥</mc:mo></mc:mrow><mc:mrow><mc:mo>^</mc:mo></mc:mrow></mc:mover></mc:mrow></mc:math>: unit vector on the <qc:math xmlns:qc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qc:mi>t</qc:mi><qc:mi>z</qc:mi></qc:math> plane). These two quantities reproduce all the correlation of <sc:math xmlns:sc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><sc:msup><sc:mi>g</sc:mi><sc:mn>2</sc:mn></sc:msup><sc:mo stretchy=\"false\">⟨</sc:mo><sc:msubsup><sc:mi>G</sc:mi><sc:mrow><sc:mi>μ</sc:mi><sc:mi>ν</sc:mi></sc:mrow><sc:mi>a</sc:mi></sc:msubsup><sc:mo stretchy=\"false\">(</sc:mo><sc:mi>s</sc:mi><sc:mo stretchy=\"false\">)</sc:mo><sc:msubsup><sc:mi>G</sc:mi><sc:mrow><sc:mi>α</sc:mi><sc:mi>β</sc:mi></sc:mrow><sc:mi>b</sc:mi></sc:msubsup><sc:mo stretchy=\"false\">(</sc:mo><sc:msup><sc:mi>s</sc:mi><sc:mo>′</sc:mo></sc:msup><sc:mo stretchy=\"false\">)</sc:mo><sc:mo stretchy=\"false\">⟩</sc:mo></sc:math>, due to the Lorentz and global SU(N</ad:mi>c</ad:mi></ad:msub></ad:math>) color symmetries in the Landau gauge. Curiously, the perpendicular-type color-magnetic correlation <cd:math xmlns:cd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cd:msub><cd:mi>C</cd:mi><cd:mo>⊥</cd:mo></cd:msub><cd:mo stretchy=\"false\">(</cd:mo><cd:mi>r</cd:mi><cd:mo stretchy=\"false\">)</cd:mo></cd:math> is found to be always negative for arbitrary <gd:math xmlns:gd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gd:mi>r</gd:mi></gd:math>, except for the same-point correlation at <id:math xmlns: display=\"inline\"><id:mi>r</id:mi><id:mo>=</id:mo><id:mn>0</id:mn></id:math>. In contrast, the parallel-type color-magnetic correlation <kd:math xmlns:kd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kd:msub><kd:mi>C</kd:mi><kd:mo stretchy=\"false\">∥</kd:mo></kd:msub><kd:mo stretchy=\"false\">(</kd:mo><kd:mi>r</kd:mi><kd:mo stretchy=\"false\">)</kd:mo></kd:math> is always positive. In the infrared region of <pd:math xmlns:pd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pd:mi>r</pd:mi><pd:mo>≳</pd:mo><pd:mn>0.4</pd:mn><pd:mtext> </pd:mtext><pd:mtext> </pd:mtext><pd:mi>fm</pd:mi></pd:math>, <rd:math xmlns:rd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><rd:msub><rd:mi>C</rd:mi><rd:mo>⊥</rd:mo></rd:msub><rd:mo stretchy=\"false\">(</rd:mo><rd:mi>r</rd:mi><rd:mo stretchy=\"false\">)</rd:mo></rd:math> and <vd:math xmlns:vd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><vd:msub><vd:mi>C</vd:mi><vd:mo stretchy=\"false\">∥</vd:mo></vd:msub><vd:mo stretchy=\"false\">(</vd:mo><vd:mi>r</vd:mi><vd:mo stretchy=\"false\">)</vd:mo></vd:math> strongly cancel each other, which leads to a significant cancelation in the sum of the field-strength correlations as ∑</ae:mo>μ</ae:mi>,</ae:mo>ν</ae:mi></ae:mrow></ae:msub>g</ae:mi>2</ae:mn></ae:msup>⟨</ae:mo>G</ae:mi>μ</ae:mi>ν</ae:mi></ae:mrow>a</ae:mi></ae:msubsup>(</ae:mo>s</ae:mi>)</ae:mo>G</ae:mi>μ</ae:mi>ν</ae:mi></ae:mrow>a</ae:mi></ae:msubsup>(</ae:mo>s</ae:mi>′</ae:mo></ae:msup>)</ae:mo>⟩</ae:mo>∝</ae:mo>C</ae:mi>⊥</ae:mo></ae:msub>(</ae:mo>|</ae:mo>s</ae:mi>−</ae:mo>s</ae:mi>′</ae:mo></ae:msup>|</ae:mo>)</ae:mo>+</ae:mo>C</ae:mi>∥</ae:mo></ae:msub>(</ae:mo>|</ae:mo>s</ae:mi>−</ae:mo>s</ae:mi>′</ae:mo></ae:msup>|</ae:mo>)</ae:mo>≃</ae:mo>0</ae:mn></ae:math>. Finally, we decompose the field-strength correlation into quadratic, cubic, and quartic terms of the gluon field <se:math xmlns:se=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><se:msub><se:mi>A</se:mi><se:mi>μ</se:mi></se:msub></se:math> in the Landau gauge. For the perpendicular-type color-magnetic correlation <ue:math xmlns:ue=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ue:msub><ue:mi>C</ue:mi><ue:mo>⊥</ue:mo></ue:msub><ue:mo stretchy=\"false\">(</ue:mo><ue:mi>r</ue:mi><ue:mo stretchy=\"false\">)</ue:mo></ue:math>, the quadratic term is always negative, which is explained by the Yukawa-type gluon propagator. The quartic term gives a relatively small contribution. In the infrared region, the cubic term is positive and tends to cancel with the quadratic term, resulting in a small value of <ye:math xmlns:ye=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ye:msub><ye:mi>C</ye:mi><ye:mo>⊥</ye:mo></ye:msub><ye:mo stretchy=\"false\">(</ye:mo><ye:mi>r</ye:mi><ye:mo stretchy=\"false\">)</ye:mo></ye:math>.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"40 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/1n8n-xlnp","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study the two-point field-strength correlation g2⟨Gμνa(s)Gαβb(s′)⟩ in the Landau gauge in SU(2) and SU(3) quenched lattice QCD, as well as the gluon propagator g2⟨Aμa(s)Aνb(s′)⟩. The Landau-gauge gluon propagator g2⟨Aμa(s)Aμa(s′)⟩ is well described by the Yukawa-type function e−mr/r with r≡|s−s′| for r=0.1–1.0fm in both SU(2) and SU(3) QCD. Next, motivated by color-magnetic instabilities in the QCD vacuum, we investigate the perpendicular-type color-magnetic correlation, C⊥(r)≡g2⟨Hza(s)Hza(s+r⊥^))⟩ (⊥^: unit vector on the xy plane), and the parallel-type one, C∥(r)≡g2⟨Hza(s)Hza(s+r∥^)⟩ (∥^: unit vector on the tz plane). These two quantities reproduce all the correlation of g2⟨Gμνa(s)Gαβb(s′)⟩, due to the Lorentz and global SU(Nc) color symmetries in the Landau gauge. Curiously, the perpendicular-type color-magnetic correlation C⊥(r) is found to be always negative for arbitrary r, except for the same-point correlation at r=0. In contrast, the parallel-type color-magnetic correlation C∥(r) is always positive. In the infrared region of r≳0.4fm, C⊥(r) and C∥(r) strongly cancel each other, which leads to a significant cancelation in the sum of the field-strength correlations as ∑μ,νg2⟨Gμνa(s)Gμνa(s′)⟩∝C⊥(|s−s′|)+C∥(|s−s′|)≃0. Finally, we decompose the field-strength correlation into quadratic, cubic, and quartic terms of the gluon field Aμ in the Landau gauge. For the perpendicular-type color-magnetic correlation C⊥(r), the quadratic term is always negative, which is explained by the Yukawa-type gluon propagator. The quartic term gives a relatively small contribution. In the infrared region, the cubic term is positive and tends to cancel with the quadratic term, resulting in a small value of C⊥(r).
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.