Tactile displays driven by projected light

IF 27.5 1区 计算机科学 Q1 ROBOTICS
Max Linnander, Dustin Goetz, Gregory Reardon, Vijay Kumar, Elliot Hawkes, Yon Visell
{"title":"Tactile displays driven by projected light","authors":"Max Linnander,&nbsp;Dustin Goetz,&nbsp;Gregory Reardon,&nbsp;Vijay Kumar,&nbsp;Elliot Hawkes,&nbsp;Yon Visell","doi":"10.1126/scirobotics.adv1383","DOIUrl":null,"url":null,"abstract":"<div >Tactile displays that lend tangible form to digital content could transform computing interactions. However, achieving the resolution, speed, and dynamic range needed for perceptual fidelity remains challenging. We present a dynamic tactile display that directly converts projected light into visible and tactile patterns via a photomechanical surface populated with millimeter-scale optotactile pixels. The pixels transduce incident light into mechanical displacements through photostimulated thermal gas expansion, yielding millimeter-scale displacements with response times of 2 to 100 milliseconds. The use of projected light for power transmission and addressing renders these displays highly scalable. We demonstrate optically driven displays with up to 1511 addressable pixels, several times more pixels than prior tactile displays attaining comparable performance. Perceptual studies confirm that these displays can reproduce diverse spatiotemporal tactile patterns with high fidelity. This research establishes a foundation for practical and versatile high-resolution tactile displays driven by light.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 107","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adv1383","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tactile displays that lend tangible form to digital content could transform computing interactions. However, achieving the resolution, speed, and dynamic range needed for perceptual fidelity remains challenging. We present a dynamic tactile display that directly converts projected light into visible and tactile patterns via a photomechanical surface populated with millimeter-scale optotactile pixels. The pixels transduce incident light into mechanical displacements through photostimulated thermal gas expansion, yielding millimeter-scale displacements with response times of 2 to 100 milliseconds. The use of projected light for power transmission and addressing renders these displays highly scalable. We demonstrate optically driven displays with up to 1511 addressable pixels, several times more pixels than prior tactile displays attaining comparable performance. Perceptual studies confirm that these displays can reproduce diverse spatiotemporal tactile patterns with high fidelity. This research establishes a foundation for practical and versatile high-resolution tactile displays driven by light.
由投射光驱动的触觉显示器
为数字内容提供有形形式的触觉显示器可能会改变计算交互。然而,实现感知保真度所需的分辨率、速度和动态范围仍然具有挑战性。我们提出了一种动态触觉显示器,它通过填充毫米级光触觉像素的光电表面直接将投射光转换为可见和触觉模式。像素通过光激发热气体膨胀将入射光转换为机械位移,产生响应时间为2至100毫秒的毫米级位移。使用投射光进行电力传输和寻址使这些显示器具有高度可扩展性。我们展示了具有高达1511个可寻址像素的光学驱动显示器,比以前的触觉显示器多出几倍的像素,达到相当的性能。知觉研究证实,这些显示器可以高保真地再现不同的时空触觉模式。本研究为实用、通用的光驱动高分辨率触觉显示器奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信