Fused filament fabrication manufactured biological scaffolds: An investigation of mechanical properties by using the Taguchi method and machine learning techniques.

IF 3.5
Idil Tartici, Paulo Bartolo
{"title":"Fused filament fabrication manufactured biological scaffolds: An investigation of mechanical properties by using the Taguchi method and machine learning techniques.","authors":"Idil Tartici, Paulo Bartolo","doi":"10.1016/j.jmbbm.2025.107215","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue engineering scaffolds are three-dimensional, biocompatible, biodegradable, and porous structures designed to support cell attachment, proliferation, and differentiation, leading to new tissue formation. Designing optimal scaffolds is complex, requiring the optimisation of various physical, chemical, and biological properties, which are cell- or tissue-dependent. For hard tissue applications such as bone, compressive strength is a critical property and can be adjusted by modifying printing conditions. The mechanical properties of scaffolds produced using different microstructural polymers (semi-crystalline and amorphous) depend on parameters that significantly impact filament extrusion and the crystallisation process. This study investigates the effect of key process parameters (printing temperature, printing speed, and flow) on scaffold mechanical properties using the Taguchi method. Three biocompatible polymers with different microstructures-polycaprolactone, polylactic acid, and polyethylene terephthalate glycol-were examined. Results show a high correlation between process parameters and compressive strength using the Taguchi method, but prediction accuracy remained low. Therefore, four machine learning algorithms-Random Forest (RF), Support Vector Regression (SVR), K-Nearest Neighbor (K-NN), and Gradient Boosting Regression (GBR)-were applied to enhance predictive performance. Notably, the RF and GBR algorithms achieved approximately 99 % prediction accuracy when evaluated on the test dataset.</p>","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"173 ","pages":"107215"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmbbm.2025.107215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue engineering scaffolds are three-dimensional, biocompatible, biodegradable, and porous structures designed to support cell attachment, proliferation, and differentiation, leading to new tissue formation. Designing optimal scaffolds is complex, requiring the optimisation of various physical, chemical, and biological properties, which are cell- or tissue-dependent. For hard tissue applications such as bone, compressive strength is a critical property and can be adjusted by modifying printing conditions. The mechanical properties of scaffolds produced using different microstructural polymers (semi-crystalline and amorphous) depend on parameters that significantly impact filament extrusion and the crystallisation process. This study investigates the effect of key process parameters (printing temperature, printing speed, and flow) on scaffold mechanical properties using the Taguchi method. Three biocompatible polymers with different microstructures-polycaprolactone, polylactic acid, and polyethylene terephthalate glycol-were examined. Results show a high correlation between process parameters and compressive strength using the Taguchi method, but prediction accuracy remained low. Therefore, four machine learning algorithms-Random Forest (RF), Support Vector Regression (SVR), K-Nearest Neighbor (K-NN), and Gradient Boosting Regression (GBR)-were applied to enhance predictive performance. Notably, the RF and GBR algorithms achieved approximately 99 % prediction accuracy when evaluated on the test dataset.

熔融丝制备生物支架:利用田口法和机器学习技术研究其力学性能。
组织工程支架是三维的、生物相容性的、可生物降解的多孔结构,旨在支持细胞附着、增殖和分化,从而形成新的组织。设计最佳支架是复杂的,需要优化各种物理、化学和生物特性,这些特性是细胞或组织依赖的。对于硬组织的应用,如骨,抗压强度是一个关键的性质,可以通过修改打印条件进行调整。使用不同微观结构聚合物(半晶和非晶)生产的支架的机械性能取决于显著影响长丝挤压和结晶过程的参数。本研究采用田口法研究了关键工艺参数(打印温度、打印速度和流量)对支架力学性能的影响。研究了三种不同微观结构的生物相容性聚合物——聚己内酯、聚乳酸和聚对苯二甲酸乙二醇酯。结果表明,田口法的工艺参数与抗压强度具有较高的相关性,但预测精度较低。因此,四种机器学习算法——随机森林(RF)、支持向量回归(SVR)、k -最近邻(K-NN)和梯度增强回归(GBR)——被应用于提高预测性能。值得注意的是,当在测试数据集上进行评估时,RF和GBR算法达到了大约99%的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信