Automated segmentation of multiple sclerosis lesions, paramagnetic rims, and central vein sign on MRI provides reliable diagnostic biomarkers.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-10-10 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.932
Fengling Hu, Zheng Ren, Luyun Chen, Alessandra M Valcarcel, Jordan Dworkin, Brian Renner, Lynn Daboul, Carly M O'Donnell, Elizabeth D Verter, Abigail R Manning, Kelly A Clark, Eunchan Bae, Christina Chen, Carolyn Lou, Theodore D Satterthwaite, Haochang Shou, Michel Bilello, Kunio Nakamura, Amit Bar-Or, Peter A Calabresi, Leorah Freeman, Roland G Henry, Erin E Longbrake, Jiwon Oh, Matthew K Schindler, Martina Absinta, Andrew J Solomon, Nancy L Sicotte, Daniel Ontaneda, Daniel S Reich, Pascal Sati, Russell T Shinohara
{"title":"Automated segmentation of multiple sclerosis lesions, paramagnetic rims, and central vein sign on MRI provides reliable diagnostic biomarkers.","authors":"Fengling Hu, Zheng Ren, Luyun Chen, Alessandra M Valcarcel, Jordan Dworkin, Brian Renner, Lynn Daboul, Carly M O'Donnell, Elizabeth D Verter, Abigail R Manning, Kelly A Clark, Eunchan Bae, Christina Chen, Carolyn Lou, Theodore D Satterthwaite, Haochang Shou, Michel Bilello, Kunio Nakamura, Amit Bar-Or, Peter A Calabresi, Leorah Freeman, Roland G Henry, Erin E Longbrake, Jiwon Oh, Matthew K Schindler, Martina Absinta, Andrew J Solomon, Nancy L Sicotte, Daniel Ontaneda, Daniel S Reich, Pascal Sati, Russell T Shinohara","doi":"10.1162/IMAG.a.932","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is characterized by central nervous system lesions detectable via MRI. Existing diagnostic criteria incorporate presence of white matter lesions, but specificity can be improved using MS-specific imaging biomarkers, including paramagnetic rim lesions (PRLs) and central vein sign (CVS). However, manual segmentation of lesions, PRLs, and CVS is time-consuming and subjective. We propose a fully-automated joint segmentation method called Automated Lesion, PRL, and CVS Analysis (ALPaCA). We trained ALPaCA using subject-level cross-validation on 47 adults with MS and 50 adults with radiological MS mimics. ALPaCA uses a voxel-wise lesion segmentation method to propose a large set of lesion candidates. Lesion candidates are input into a multi-contrast, multi-label 3D convolutional neural network as 3D patches to produce lesion, PRL, and CVS predictions. When multiple lesions exist within a patch, an attention mechanism identifies which lesion candidate to classify. At the lesion level, ALPaCA achieves cross-validation areas under the receiver operating characteristic curve (AUROCs) of 0.95, 0.91, and 0.87 for lesion, PRL, and CVS classification, outperforming previous methods (all p < 0.001). Correlations between subject-level ALPaCA lesion and PRL scores with manual counts are higher than those of previous methods (p < 0.001; p = 0.03). Subject-level ALPaCA PRL and CVS scores are highly associated with MS in logistic regressions, when controlling for age and sex (p < 0.001). ALPaCA allows for fully-automated simultaneous segmentation of MS lesions, PRLs, and CVS using clinically-feasible scans. These segmentations outperform existing methods at the lesion and subject level.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12516162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is characterized by central nervous system lesions detectable via MRI. Existing diagnostic criteria incorporate presence of white matter lesions, but specificity can be improved using MS-specific imaging biomarkers, including paramagnetic rim lesions (PRLs) and central vein sign (CVS). However, manual segmentation of lesions, PRLs, and CVS is time-consuming and subjective. We propose a fully-automated joint segmentation method called Automated Lesion, PRL, and CVS Analysis (ALPaCA). We trained ALPaCA using subject-level cross-validation on 47 adults with MS and 50 adults with radiological MS mimics. ALPaCA uses a voxel-wise lesion segmentation method to propose a large set of lesion candidates. Lesion candidates are input into a multi-contrast, multi-label 3D convolutional neural network as 3D patches to produce lesion, PRL, and CVS predictions. When multiple lesions exist within a patch, an attention mechanism identifies which lesion candidate to classify. At the lesion level, ALPaCA achieves cross-validation areas under the receiver operating characteristic curve (AUROCs) of 0.95, 0.91, and 0.87 for lesion, PRL, and CVS classification, outperforming previous methods (all p < 0.001). Correlations between subject-level ALPaCA lesion and PRL scores with manual counts are higher than those of previous methods (p < 0.001; p = 0.03). Subject-level ALPaCA PRL and CVS scores are highly associated with MS in logistic regressions, when controlling for age and sex (p < 0.001). ALPaCA allows for fully-automated simultaneous segmentation of MS lesions, PRLs, and CVS using clinically-feasible scans. These segmentations outperform existing methods at the lesion and subject level.

MRI上多发性硬化症病变、顺磁边缘和中央静脉征象的自动分割提供了可靠的诊断生物标志物。
多发性硬化症(MS)的特点是通过MRI检测到中枢神经系统病变。现有的诊断标准包括白质病变的存在,但特异性可以通过ms特异性成像生物标志物来提高,包括顺磁边缘病变(prl)和中央静脉征象(CVS)。然而,手动分割病变、prl和CVS是费时且主观的。我们提出了一种全自动关节分割方法,称为自动病变,PRL和CVS分析(ALPaCA)。我们对47名成年多发性硬化症患者和50名成年放射性多发性硬化症患者进行了受试者水平的交叉验证训练。ALPaCA使用基于体素的病灶分割方法来提出大量的病灶候选集。病变候选物被输入到一个多对比度、多标签的3D卷积神经网络中,作为3D补丁产生病变、PRL和CVS预测。当一个斑块内存在多个病灶时,注意机制会识别出该对哪个病灶进行分类。在病变水平上,ALPaCA在病变、PRL和CVS分类的受试者工作特征曲线(auroc)下实现了0.95、0.91和0.87的交叉验证区域,优于以往的方法(均p < 0.001)。人工计数的受试者水平ALPaCA病变与PRL评分的相关性高于以往方法(p < 0.001; p = 0.03)。在控制年龄和性别的情况下,受试者水平的ALPaCA PRL和CVS评分在逻辑回归中与MS高度相关(p < 0.001)。ALPaCA允许使用临床可行的扫描对MS病变、prl和CVS进行全自动同时分割。这些分割优于现有的方法在病变和主题水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信