Evgenii Gerasimov, Maria Berg, Anastasia Bolshakova, Ilya Bezprozvanny, Olga Vlasova
{"title":"Chemogenetic Modulation of Astrocytic Activity Rescues Hippocampus Associated Neurodegeneration in Alzheimer's Disease Mice Model 5xFAD.","authors":"Evgenii Gerasimov, Maria Berg, Anastasia Bolshakova, Ilya Bezprozvanny, Olga Vlasova","doi":"10.1155/np/9880933","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by Aβ-amyloid accumulation and cognitive decline. Despite extensive research, effective treatments remain elusive. Astrocytes, the most abundant glial cells, play a crucial role in synaptic transmission, neuronal excitability, and plasticity. In AD, astrocytes become reactive, exhibiting aberrant calcium signaling and altered neurotransmitter release, making them promising targets for disease-modifying therapies. To address this, we explored designer receptors exclusively activated by designer drugs (DREADDs), specifically the hM3D(Gq) receptor, which selectively modulates intracellular Ca<sup>2+</sup> levels in astrocytes upon activation by clozapine-N-oxide (CNO). Using daily CNO administration in 8-month-old 5xFAD mice, we observed a significant enhancement of impaired long-term potentiation formation, accompanied by cognitive improvements in the fear conditioning (FC) and Morris water maze (MWM) tests. Additionally, anxiety levels and social preference deficits in 5xFAD mice were fully restored following astrocytic activity modulation. Importantly, this approach reduced Aβ-amyloid plaque burden and demonstrated a trend toward mitigating astrocytic reactivity, further highlighting its therapeutic potential. Our findings suggest that targeting astrocytic activity via Gq-coupled receptors represents a novel and promising strategy for AD treatment, offering a noninvasive and effective approach to mitigating disease progression.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2025 ","pages":"9880933"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/np/9880933","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by Aβ-amyloid accumulation and cognitive decline. Despite extensive research, effective treatments remain elusive. Astrocytes, the most abundant glial cells, play a crucial role in synaptic transmission, neuronal excitability, and plasticity. In AD, astrocytes become reactive, exhibiting aberrant calcium signaling and altered neurotransmitter release, making them promising targets for disease-modifying therapies. To address this, we explored designer receptors exclusively activated by designer drugs (DREADDs), specifically the hM3D(Gq) receptor, which selectively modulates intracellular Ca2+ levels in astrocytes upon activation by clozapine-N-oxide (CNO). Using daily CNO administration in 8-month-old 5xFAD mice, we observed a significant enhancement of impaired long-term potentiation formation, accompanied by cognitive improvements in the fear conditioning (FC) and Morris water maze (MWM) tests. Additionally, anxiety levels and social preference deficits in 5xFAD mice were fully restored following astrocytic activity modulation. Importantly, this approach reduced Aβ-amyloid plaque burden and demonstrated a trend toward mitigating astrocytic reactivity, further highlighting its therapeutic potential. Our findings suggest that targeting astrocytic activity via Gq-coupled receptors represents a novel and promising strategy for AD treatment, offering a noninvasive and effective approach to mitigating disease progression.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.