Ali Basim Mahdi, Zahraa A Mousa Al-Ibraheemi, Zahraa Fadhil Kadhim, Raffef Jabar Abbrahim, Yaqeen Sameer Dhayool, Ghasaq Mankhey Jabbar, Sajjad A Mohammed
{"title":"AI-Powered Early Detection of Retinal Conditions: A Deep Learning Approach for Diabetic Retinopathy and Beyond.","authors":"Ali Basim Mahdi, Zahraa A Mousa Al-Ibraheemi, Zahraa Fadhil Kadhim, Raffef Jabar Abbrahim, Yaqeen Sameer Dhayool, Ghasaq Mankhey Jabbar, Sajjad A Mohammed","doi":"10.1155/ijbi/6154285","DOIUrl":null,"url":null,"abstract":"<p><p>Various retinal conditions, such as diabetic macular edema (DME) and choroidal neovascularization (CNV), pose significant risks of visual impairment and vision loss. Early detection through automated and accurate and advanced systems can greatly enhance clinical outcomes for patients as well as for medical staff. This study is aimed at developing a deep learning-based model for the early detection of retinal diseases using OCT images. We utilized a publicly available retinal image dataset comprising images with DME, CNV, drusen, and normal cases. The Inception model was trained and validated using various evaluation metrics. Performance metrics, including accuracy, precision, recall, and <i>F</i>1 score, were calculated. The proposed model achieved an accuracy of 94.2%, with precision, recall, and <i>F</i>1 scores exceeding 92% across all classes. Statistical analysis demonstrated the robustness of the model across folds. Our findings highlight the potential of AI-powered systems in improving early detection of retinal conditions, paving the way for integration into clinical workflows. More efforts are needed to utilize it offline by making it available on ophthalmologist mobile devices to facilitate the diagnosis process and provide better service to patients.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2025 ","pages":"6154285"},"PeriodicalIF":1.3000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12517976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/6154285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Various retinal conditions, such as diabetic macular edema (DME) and choroidal neovascularization (CNV), pose significant risks of visual impairment and vision loss. Early detection through automated and accurate and advanced systems can greatly enhance clinical outcomes for patients as well as for medical staff. This study is aimed at developing a deep learning-based model for the early detection of retinal diseases using OCT images. We utilized a publicly available retinal image dataset comprising images with DME, CNV, drusen, and normal cases. The Inception model was trained and validated using various evaluation metrics. Performance metrics, including accuracy, precision, recall, and F1 score, were calculated. The proposed model achieved an accuracy of 94.2%, with precision, recall, and F1 scores exceeding 92% across all classes. Statistical analysis demonstrated the robustness of the model across folds. Our findings highlight the potential of AI-powered systems in improving early detection of retinal conditions, paving the way for integration into clinical workflows. More efforts are needed to utilize it offline by making it available on ophthalmologist mobile devices to facilitate the diagnosis process and provide better service to patients.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics