Computed ECD spectral data for over 10,000 chiral organic small molecules.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Da Long, Zhihao Li, Xin Xu, Chengchun Liu, Hui Zhang, Xiaoyu Cao, Liulin Yang, Xinchang Wang, Fanyang Mo
{"title":"Computed ECD spectral data for over 10,000 chiral organic small molecules.","authors":"Da Long, Zhihao Li, Xin Xu, Chengchun Liu, Hui Zhang, Xiaoyu Cao, Liulin Yang, Xinchang Wang, Fanyang Mo","doi":"10.1038/s41597-025-05929-2","DOIUrl":null,"url":null,"abstract":"<p><p>Determining the absolute configuration of chiral molecules is of fundamental importance in the fields of natural products chemistry, asymmetric catalysis, and pharmaceutical development. A widely adopted approach involves the comparison of experimental and theoretical electronic circular dichroism (ECD) spectra, which has proven to be a reliable method for absolute configuration assignment. However, the generation of theoretical ECD spectra via time-dependent density functional theory (TD-DFT) remains the rate-limiting step in this workflow, making its acceleration both essential and challenging. Although recent advances in deep learning offer promising strategies for establishing structure-spectrum relationships and expediting theoretical spectrum prediction, the lack of standardized and comprehensive ECD spectral datasets continues to hinder progress. This study presents the Chiral Molecular Circular Dichroism Spectral (CMCDS) dataset, a systematically structural benchmark dataset that addresses the fragmentation of existing ECD data. Characterized by high standardization, scalability, and broad molecular diversity, CMCDS facilitates deep learning applications in ECD analysis and fosters data-driven discovery of chiral molecules.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1641"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12521594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05929-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the absolute configuration of chiral molecules is of fundamental importance in the fields of natural products chemistry, asymmetric catalysis, and pharmaceutical development. A widely adopted approach involves the comparison of experimental and theoretical electronic circular dichroism (ECD) spectra, which has proven to be a reliable method for absolute configuration assignment. However, the generation of theoretical ECD spectra via time-dependent density functional theory (TD-DFT) remains the rate-limiting step in this workflow, making its acceleration both essential and challenging. Although recent advances in deep learning offer promising strategies for establishing structure-spectrum relationships and expediting theoretical spectrum prediction, the lack of standardized and comprehensive ECD spectral datasets continues to hinder progress. This study presents the Chiral Molecular Circular Dichroism Spectral (CMCDS) dataset, a systematically structural benchmark dataset that addresses the fragmentation of existing ECD data. Characterized by high standardization, scalability, and broad molecular diversity, CMCDS facilitates deep learning applications in ECD analysis and fosters data-driven discovery of chiral molecules.

计算ECD光谱数据超过10,000手性有机小分子。
确定手性分子的绝对构型在天然产物化学、不对称催化和药物开发等领域具有重要意义。一种被广泛采用的方法是比较实验和理论电子圆二色(ECD)光谱,这已被证明是一种可靠的绝对构型分配方法。然而,通过时间相关密度泛函理论(TD-DFT)生成理论ECD谱仍然是该工作流程中的限速步骤,这使得其加速既必要又具有挑战性。尽管深度学习的最新进展为建立结构-光谱关系和加速理论光谱预测提供了有前途的策略,但缺乏标准化和全面的ECD光谱数据集仍然阻碍着进展。本研究提出了手性分子圆二色光谱(CMCDS)数据集,这是一个系统的结构基准数据集,解决了现有ECD数据的碎片化问题。CMCDS具有高度标准化、可扩展性和广泛的分子多样性的特点,促进了ECD分析中的深度学习应用,并促进了手性分子的数据驱动发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信