Jing-Lei Zhang, Shuo-Lan Tong, Qi-Qi Zhuang, Sheng-Jie Jin, Jia-Qiu Li, Jie Sun
{"title":"Clonal hematopoiesis of indeterminate potential: a multisystem hub bridging hematopoietic dysfunction with non-hematopoietic diseases.","authors":"Jing-Lei Zhang, Shuo-Lan Tong, Qi-Qi Zhuang, Sheng-Jie Jin, Jia-Qiu Li, Jie Sun","doi":"10.1186/s40779-025-00654-8","DOIUrl":null,"url":null,"abstract":"<p><p>Clonal hematopoiesis of indeterminate potential (CHIP), driven by leukemia-related somatic mutations in hematopoietic stem cells, previously recognized as a major risk factor for hematological malignancies, has now emerged as a potent risk factor for chronic inflammation and diverse non-hematologic diseases. CHIP-associated DNA methyltransferase 3 alpha (DNMT3A), tet methylcytosine dioxygenase 2 (TET2), and additional sex combs like 1 (ASXL1) mutations alter epigenetic programs, skew myelopoiesis, and increase proinflammatory cytokines, resulting in chronic inflammation and immune imbalance. This review integrates mechanistic insights with clinical evidence to delineate CHIP's roles in solid tumors, cardiovascular disorders, and metabolic dysregulation, with an extended discussion of renal dysfunction and neurodegenerative conditions. Furthermore, we also discuss CHIP's diagnostic and therapeutic impacts across multiple disease contexts, advocating for mutation-specific diagnostic paradigms to guide therapeutic interventions.</p>","PeriodicalId":18581,"journal":{"name":"Military Medical Research","volume":"12 1","pages":"66"},"PeriodicalIF":22.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40779-025-00654-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), driven by leukemia-related somatic mutations in hematopoietic stem cells, previously recognized as a major risk factor for hematological malignancies, has now emerged as a potent risk factor for chronic inflammation and diverse non-hematologic diseases. CHIP-associated DNA methyltransferase 3 alpha (DNMT3A), tet methylcytosine dioxygenase 2 (TET2), and additional sex combs like 1 (ASXL1) mutations alter epigenetic programs, skew myelopoiesis, and increase proinflammatory cytokines, resulting in chronic inflammation and immune imbalance. This review integrates mechanistic insights with clinical evidence to delineate CHIP's roles in solid tumors, cardiovascular disorders, and metabolic dysregulation, with an extended discussion of renal dysfunction and neurodegenerative conditions. Furthermore, we also discuss CHIP's diagnostic and therapeutic impacts across multiple disease contexts, advocating for mutation-specific diagnostic paradigms to guide therapeutic interventions.
期刊介绍:
Military Medical Research is an open-access, peer-reviewed journal that aims to share the most up-to-date evidence and innovative discoveries in a wide range of fields, including basic and clinical sciences, translational research, precision medicine, emerging interdisciplinary subjects, and advanced technologies. Our primary focus is on modern military medicine; however, we also encourage submissions from other related areas. This includes, but is not limited to, basic medical research with the potential for translation into practice, as well as clinical research that could impact medical care both in times of warfare and during peacetime military operations.