Li Zhou, Dongxiao Wu, Yabo Zhou, Dianheng Wang, Zhuo-Yu An, Peng Zhao, Shaoyang Lai, Zhenfeng Wang, Nannan Zhou, Jie Chen, Jiadi Lv, Xiaohui Zhang, Bo Huang
{"title":"Heterozygous human JAK2V617F activates AhR to drive essential thrombocythemia and promote thrombosis.","authors":"Li Zhou, Dongxiao Wu, Yabo Zhou, Dianheng Wang, Zhuo-Yu An, Peng Zhao, Shaoyang Lai, Zhenfeng Wang, Nannan Zhou, Jie Chen, Jiadi Lv, Xiaohui Zhang, Bo Huang","doi":"10.1084/jem.20250153","DOIUrl":null,"url":null,"abstract":"<p><p>JAK2V617F causes >50% essential thrombocythemia (ET) and >90% polycythemia vera (PV). How such a single mutation causes distinct disorders remains a long-standing enigma. Here, we show that heterozygous JAK2V617F activates the transcription factor aryl hydrocarbon receptor (AhR), which biases MEP differentiation toward megakaryocytes in ET patients. In contrast, most PV patients' JAK2V617F exhibits a homozygous mutation that does not activate AhR. We found that JAK2V617F forms a heterodimer with JAK2 to recruit and activate STAT1, thereby inducing AhR activation and driving ET pathogenesis. However, JAK2 forms V617F homodimers in PV patients, which activate STAT5 and drive PV development. In addition to increasing platelet number, activated AhR may enhance platelet activity via the COX2-TXA2 axis. Importantly, targeting AhR inhibits thrombocytosis in JAK2V617F ET humanized mice. These findings not only elucidate the molecular mechanism of JAK2V617F ET but also provide a potential strategy for its treatment.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 12","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20250153","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
JAK2V617F causes >50% essential thrombocythemia (ET) and >90% polycythemia vera (PV). How such a single mutation causes distinct disorders remains a long-standing enigma. Here, we show that heterozygous JAK2V617F activates the transcription factor aryl hydrocarbon receptor (AhR), which biases MEP differentiation toward megakaryocytes in ET patients. In contrast, most PV patients' JAK2V617F exhibits a homozygous mutation that does not activate AhR. We found that JAK2V617F forms a heterodimer with JAK2 to recruit and activate STAT1, thereby inducing AhR activation and driving ET pathogenesis. However, JAK2 forms V617F homodimers in PV patients, which activate STAT5 and drive PV development. In addition to increasing platelet number, activated AhR may enhance platelet activity via the COX2-TXA2 axis. Importantly, targeting AhR inhibits thrombocytosis in JAK2V617F ET humanized mice. These findings not only elucidate the molecular mechanism of JAK2V617F ET but also provide a potential strategy for its treatment.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.