{"title":"Current methods and future needs for visible and non-visible detection of plant stress responses.","authors":"Julian Cooper, Kevin Propst, Cory D Hirsch","doi":"10.3389/fpls.2025.1585413","DOIUrl":null,"url":null,"abstract":"<p><p>As climate change alters the frequency, intensity, and co-occurrences of abiotic and biotic stresses, the effective and efficient detection of plant stress responses and resistance mechanisms is critical for safeguarding global food security. Stressful environments elicit both visible and non-visible changes in plants. Cellular and subcellular changes, often invisible to the naked eye, can serve as indicators of stress and can be quantified using molecular, ionomic, metabolomic, genomic, and transcriptomic methods. In contrast, visible responses such as discoloration, morphological changes, and disease symptoms can be monitored efficiently through atmospheric, aerial, and terrestrial remote sensing platforms. Phenotyping at the whole-plant and organ levels offers valuable insights for diagnosing stress <i>in situ</i>, providing opportunities to study plant resistance and acclimation strategies under realistic conditions. However, the complexity of plant stress responses, spanning microscopic to macroscopic scales and diverse biological processes, make it challenging for any single technology to comprehensively capture the full spectrum of reactions. Furthermore, the rising prevalence of multifactorial stress conditions highlights the need for research on synergistic and antagonistic interactions between stress factors. To effectively mitigate the impacts of stress on agriculture, future research must prioritize integrative multi-omic approaches that connect cellular and subcellular processes with morphological and phenological stress responses.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1585413"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1585413","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As climate change alters the frequency, intensity, and co-occurrences of abiotic and biotic stresses, the effective and efficient detection of plant stress responses and resistance mechanisms is critical for safeguarding global food security. Stressful environments elicit both visible and non-visible changes in plants. Cellular and subcellular changes, often invisible to the naked eye, can serve as indicators of stress and can be quantified using molecular, ionomic, metabolomic, genomic, and transcriptomic methods. In contrast, visible responses such as discoloration, morphological changes, and disease symptoms can be monitored efficiently through atmospheric, aerial, and terrestrial remote sensing platforms. Phenotyping at the whole-plant and organ levels offers valuable insights for diagnosing stress in situ, providing opportunities to study plant resistance and acclimation strategies under realistic conditions. However, the complexity of plant stress responses, spanning microscopic to macroscopic scales and diverse biological processes, make it challenging for any single technology to comprehensively capture the full spectrum of reactions. Furthermore, the rising prevalence of multifactorial stress conditions highlights the need for research on synergistic and antagonistic interactions between stress factors. To effectively mitigate the impacts of stress on agriculture, future research must prioritize integrative multi-omic approaches that connect cellular and subcellular processes with morphological and phenological stress responses.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.